© 2020 IIETA. This article is published by IIETA and is licensed under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).
OPEN ACCESS
This paper assesses the performance of photovoltaic (PV) technologies integrated into buildings in the desert climate and the factors that affect energy yield. Cadmium telluride (CdTe) and standard mono-crystalline silicon (c-Si) modules were installed facing south, in the three more common tilt angles used in the Building Applied Photovoltaics (BAPV) and Building Integrated Photovoltaics (BIPV) applications at the Dubai latitude (90°, 25°, and 0°). We monitored the energy production, the temperature of the PV modules, irradiance on each tilt angle, and the meteorological parameters for a full year. We then calculated the performance ratio for the six modules to evaluate the different factors, including temperature and soiling losses, following IEC 61724-1. The 25° modules, usual PV rooftop angle, had the highest and more consistent energy yield throughout the year. Conversely, the energy yield of the 90° modules, typical angle for facades, vertical shading devices, and guardrails, had the lowest yield and showed wide variations. This is expected as the 90° angle is more affected by the seasonal changes of the solar altitude. The soiling losses on these modules were lower than 1%. However, at 0°, the soiling loss was more evident, with an average reduction of 10.79%. The c-Si module at 25° generated the highest normalized energy yield of 402.02 kW h/m2, which was 23.5% more than that of CdTe module with the same tilt angle.
BAPV, BIPV, building integrated, CdTe, c-Si, photovoltaics, soiling, tilt angle
[1] The Official Portal of the UAE Government, “UAE Energy Strategy 2050.” https://u.ae/en/about-the-uae/strategies-initiatives-and-awards/federal-governments-strategies-andplans/uae-energy-strategy-2050.
[2] TAQATI, “2018 Annual Report - Dubai Demand Side Management Strategy,” no. March, pp. 1–136, 2019.
[3] Sgouridis, S., Griffiths, S., Kennedy, S., Khalid, A. & Zurita, N., A sustainable energy transition strategy for the United Arab Emirates : Evaluation of options using an Integrated Energy Model. Energy Strateg. Rev., 2(1), pp. 8–18, 2013, doi:10.1016/j.esr.2013.03.002
[4] Ferrara, C., Wilson, H. R. & Sprenger, W., Building-integrated photovoltaics (BIPV). In The Performance of Photovoltaic (PV) Systems: Modelling, Measurement and Assessment, 2017.
[5] Osseweijer, F. J. W., van den Hurk, L. B. P., Teunissen, E. J. H. M. & van Sark, W. G. J. H. M., A comparative review of building integrated photovoltaics ecosystems in selected European countries. Renew. Sustain. Energy Rev., 90(2017), pp. 1027–1040, 2018. doi:10.1016/j.rser.2018.03.001
[6] Elnosh, A., et al., Field study of factors influencing performance of PV modules in buildings (BIPV/BAPV) installed in UAE. 2018 IEEE 7th World Conf. Photovolt. Energy Conversion, WCPEC 2018 - A Jt. Conf. 45th IEEE PVSC, 28th PVSEC 34th EU PVSEC, pp. 565–568, 2018. doi:10.1109/PVSC.2018.8547298
[7] IEC Photovoltaic system performance – Part 1: Monitoring, IEC Standard 61274-1, 2017.
[8] Griffiths, S. & Mills, R., Potential of rooftop solar photovoltaics in the energy system evolution of the United Arab Emirates, 9, pp. 1–7, 2016, doi:10.1016/j.esr.2015.11.001
[9] Srivastava, R., Tiwari, A. N. & Giri, V. K., An overview on performance of PV plants commissioned at different places in the world. Energy Sustain. Dev., 54, pp. 51–59, 2020. doi:10.1016/j.esd.2019.10.004