Energy Rehabilitation of Buildings Through Phase Change Materials and Ceramic Ventilated Façades

Energy Rehabilitation of Buildings Through Phase Change Materials and Ceramic Ventilated Façades

Víctor Echarri Iribarren José L. Sanjuan Palermo Francisco J. Aldea Castelló Carlos Rizo Maestre

Department of Building Construction, University of Alicante, Spain

University of Alicante, Spain

Page: 
332-342
|
DOI: 
https://doi.org/10.2495/EQ-V4-N4-332-342
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

In recent years, phase change materials (PCMs) have gained major relevance for their ability to take advantage of indoor/outdoor air temperature differences to store energy. This characteristic of PCMs allows to transfer stored energy to periods of energy demand, thus achieving optimum conditions of comfort and notable energy savings. The present study compared the energy consumption of a traditional façade and a ventilated façade to which large format ceramic tiles covered with PCMs were applied. For this purpose, an office building in the city of Alicante was used as a case study. Salt hydrate PCMs were attached to the slabs, and air was allowed to circulate or not circulate through night and day dampers as passive conditioning, accumulating energy. The energy performance of the building was simulated using the Lider-Calener (HULC) energy certification tool in both scenarios. The building’s energy demand was calculated in its current state and with the ventilated façade with ceramic tiles and PCMs. An energy saving of 5% was obtained.

Keywords: 

ceramic, energy rehabilitation, phase change materials (PCM), ventilated façades

  References

[1] Directive 2010/31/EU of the European Parliament and of The Council of 19 may 2010 on the energy performance of buildings.

[2] Ministerio de Fomento. (2013, 10 de septiembre). Orden FOM/1635/2013, de 10 de sep- tiembre, por la que se actualiza el Documento Básico DB-HE «Ahorro de Energía», del Código Técnico de la Edificación. Boletín Oficial del Estado, nº219, pp. 67137–67209.

[3] Ministerio de Vivienda. (2006, 28 de marzo). Real Decreto 314/2006 de 17 de marzo. Código Técnico de la Edificación. Boletín Oficial del Estado, nº74, pp. 11816–11831.

[4] The Government of Spain. Royal Decree 314/2006. Approving the Spanish Technical Building Code CTE-DB-HE-1; The Government of Spain: Madrid, Spain, 2013.

[5] Fernández, A.E., Iribarren, V.E. & Iribarren, F.E., Energy efficiency of ventilated façades: Residential buildings, Alicante, Spain. WIT Transactions on the Built Environment, vol. 171, WIT Press: Southampton and Boston, pp. 41–52, 2017. https://doi.org/10.2495/STR170041

[6] Abhat, A., Low temperature latent heat thermal energy storage: heat storage materials. Solar Energy, 30, pp. 313–332, 1983. https://doi.org/10.1016/0038-092X(83)90186-X

[7] de Gracia, A., Navarro, L., Castell, A., Ruiz-Pardo, A., Álvarez, S. & Cabeza, L.F., Experimental study of a ventilated facade with PCM during winter period. Energy and Buildings, 58, pp. 324–332, 2013. https://doi.org/10.1016/j.enbuild.2012.10.026

[8] de Gracia, A., Navarro, L., Castell, A., Ruiz-Pardo, A., Álvarez, S. & Cabeza, L.F., Solar absorption in a ventilated facade with PCM. Experimental results. Energy Proce- dia, 30, pp. 986–994, 2012. https://doi.org/10.1016/j.egypro.2012.11.111

[9] Echarri, V., Espinosa, A. & Rizo, C., Thermal transmission through Existing build-  ing enclosures: Destructive monitoring in Intermediate Layers versus Non-Destructive Monitoring with sensor son surfaces, Sensors, 17, 2848, 2017. https://doi.org/10.3390/ s17122848

[10] Pomponi, F., Piroozfar, P.A.E., Southall, R., Ashton, P. & Farr, E.R.P., Energy performance of Double-Skin Façades in temperate climates: A systematic review and meta-analysis. Renewable and Sustainable Energy Reviews, 54, pp. 1525–1536, 2016. https://doi.org/10.1016/j.rser.2015.10.075

[11] Hasan, A. & Sayigh, A.A., Some fatty acids as phase-change thermal energy storage materials. Renewable Energy, 4(1), pp. 69–76, 1994. https://doi.org/10.1016/0960- 1481(94)90066-3

[12] Kuznik, F., Virgone, j. & Noel, j., Optimization of a phase change material wall- board, Applied Thermal Engineering, 28 (11–12), pp. 1291–1298, 2008. https://doi. org/10.1016/j.applthermaleng.2007.10.012

[13] Suárez, R., & Fragoso, j., Estrategias pasivas de optimización energética de la vivienda social en clima mediterráneo. Informes de la Construcción, 68 (541), pp. 1–12, 2016. http://dx.doi.org/10.3989/ic.15.050

[14] Bienvenido-Huertas, D., Bermúdez, j., Moyano, j. & Marín, D., Comparison of quantitative IRT to estimate U-value using different approximations of ECHTC in multi-leaf walls, Energy & Buildings, 184, pp. 99–113, 2019. https://doi.org/10.1016/j. enbuild.2018.11.028

[15] Código Técnico de la Edificación (CTE), Reglamento de Instalaciones Térmicas en los Edificios (RITE), ITC, 02.2.1.

[16] Iribarren, V.E., Garrigós, A.G. & Fernández, A.E., Energy rehabilitation of ventilated façades using phenolic panelling at the university of Alicante museum: Thermal char- acterisation and energy demand. WIT Transactions on the Built Environment, vol. 171, WIT Press: Southampton and Boston, pp. 3–15, 2017. https://doi.org/10.2495/ STR170011

[17] Diarce, G. et al. Ventilated active façades with PCM. Applied Energy, 109, pp. 530–537, 2013. https://doi.org/10.1016/j.apenergy.2013.01.032