OPEN ACCESS
Thin film technologies have attracted ever-growing interest in different industrial areas. Concerning solid oxide fuel cells (SOFCs), especially devices operating in the intermediate temperature range, such technologies are applied particularly for the deposition of dense, gas-tight electrolyte films with a thickness of several µm to decrease ohmic resistance and enhance the cell performance. The main requirements for the technology selected are its low cost, simplicity of the equipment used, short deposition time and flexibility regarding the cell shape. First, we overview thin-film technologies adapted to the deposition of SOFC functional layers, discussing their strengths and weaknesses, with special attention given to electrophoretic deposition (EPD) as being the most simple and cost-effective colloidal method to fabricate different electrolyte films. Then we present the contribution of our scientific group in the development of the EPD method. The preparation of stable suspensions for the EDP is one of the key requirements for its successful implementation and reproducibility; this was considered in detail and the effect of self-stabilization in suspensions based on nanopowders (7–15 nm), obtained by the method of laser evaporation with consequent condensation, was discussed. Such suspensions, exhibiting high positive ζ-potential values (30–50 mV), were shown to be suitable for EPD without the addition of dispersants or iodine. The requirements for the electrode substrates were formulated and a model of particle aggregation near the porous substrate surface was proposed. Deposition parameters were established for different electrolyte films – commonly used yttria-stabilized zirconia, single and multiply doped CeO2 and proton-conducting doped BaCeO3 electrolytes. As was shown, the deposition on the highly conducting cathode substrates is simpler to implement than the EPD on non-conducting anode substrates and, in addition, it produces high quality films which render high OCV values and superior SOFC performance.
cathode substrate, electrolyte film, electrophoretic deposition, SOFC, thin-film technology
[1] Kendall, K., Portable early market SOFCs. High-temperature Solid Oxide Fuel Cells for the 21st Century (Second Edition). Fundamentals, Design and Applications. ed. K. Kendall & M. Kendall, Elsevier: Academic Press, pp. 329–356, 2016.
[2] Choudhury, A., Chandra, H. & Arora, A., Application of solid oxide fuel cell technol- ogy for power generation—A review. Renewable and Sustainable Energy Reviews, 20, pp. 430–442, 2013. https://doi.org/10.1016/j.rser.2012.11.031
[3] Zhang, X., Chan, S.H., Li, G., Ho, H.K., Li, J. & Feng, Zh., A review of integration strategies for solid oxide fuel cells. Journal of Power Sources, 195(3), pp. 685–702, 2010. https://doi.org/10.1016/j.jpowsour.2009.07.045
[4] Silva, F.S. & Souza, T.M., Novel materials for solid oxide fuel cell technologies: A literature review. International Journal of Hydrogen Energy, 42(41), pp. 26020–26036, 2017. https://doi.org/10.1016/j.ijhydene.2017.08.105
[5] Pikalova, E.Y., Kolchugin, A.A. & Bamburov, V.G., Ceria-based materials for high- temperature electrochemistry applications. International Journal of Energy Production and Management, 1(3), pp. 272–283, 2016. https://doi.org/10.2495/eq-v1-n3-272-283
[6] Kilner, J.A. & Burriel, M., Materials for intermediate-temperature solid-oxide fuel cells. Annual Review of Materials Research, 44(1), pp. 365–293, 2014. https://doi. org/10.1146/annurev-matsci-070813-113426
[7] Wachsman, E., Ishihara, T. & Kilner J., Low-temperature solid-oxide fuel cells. MRS Bulletin, 39(9), pp. 773–779, 2014. https://doi.org/10.1557/mrs.2014.192
[8] Mahato, N., Banerjee, A., Gupta, A., Omar, S. & Balani, K., Progress in materials selec- tion for solid oxide fuel cell technology: A review. Renewable and Sustainable Energy Reviews, 72, pp. 141–337, 2015. https://doi.org/10.1016/j.pmatsci.2015.01.001
[9] Will, J., Mitterdorfer, A., Kleinlogel, C., Perednis, D. & Gauckler, L.J., Fabrication of thin electrolytes for second-generation solid oxide fuel cells. Solid State Ionics, 131(1–2), pp. 79–96, 2000. https://doi.org/10.1016/s0167-2738(00)00624-x
[10] Tuckler, M.C., Progress in metal-supported solid oxide fuel cells: A review. Journal of Power Sources, 195(15), pp. 4570–4582, 2010. https://doi.org/10.1016/j.jpow- sour.2010.02.035
[11] Chelmehsara, M.E. & Mahmoudimehr, J., Techno-economic comparison of anode- supported, cathode-supported, and electrolyte-supported SOFCs. International Journal of Hydrogen Energy, 43(32), pp. 15521–15530, 2018. https://doi.org/10.1016/j. ijhydene.2018.06.114
[12] Nguyen, X.V., Chang, C.T., Jung, G.B., Chan, S.H., Yeh, C.C., Yu, J.W. & Lee, C.Y., Improvement on the design and fabrication of planar SOFCs with anode–supported cells based on modified button cells. Renewable Energy, 129(B), pp. 806–813, 2018. https://doi.org/10.1016/j.renene.2017.03.070
[13] Mahmud, L.S., Muchtar, A. & Somalu, M.R., Challenges in fabricating planar solid oxide fuel cells: A review. Renewable and Sustainable Energy Reviews, 72, pp. 105–116, 2017. https://doi.org/10.1016/j.rser.2017.01.019
[14] Huang, K. & Subhash, C.S., Cathode-supported tubular solid oxide fuel cell technology: A critical review. Journal of Power Sources, 237, pp. 84–97, 2013. https://doi. org/10.1016/j.jpowsour.2013.03.001
[15] Van Gestel, T., Sebold, D. & Buchkremer, H.P., Processing of 8YSZ and CGO thin film electrolyte layers for intermediate- and low-temperature SOFCs. Journal of the European Ceramic Society, 35(5), pp. 1505–1515, 2015. https://doi.org/10.1016/j.jeur- ceramsoc.2014.11.017
[16] Noh, H.S., Yoon, K.J., Kim, B.K., Je, H.J., Lee, H.W., Lee, J.H. & Son, J.W., The potential and challenges of thin-film electrolyte and nanostructured electrode for yttria-stabilized zirconia-base anode-supported solid oxide fuel cells. Journal of Power Sources, 247, pp. 105–111, 2014. https://doi.org/10.1016/j.jpowsour.2013.08.072
[17] Myung, D.H., Hong, J., Yoon, K., Kim, B.K., Lee, H.W., Lee, J.H. & Son, J.W., The effect of an ultra-thin zirconia blocking layer on the performance of a 1-µm-thick gadolinia-doped ceria electrolyte solid-oxide fuel cell. Journal of Power Sources, 206, pp. 91–96, 2012. https://doi.org/10.1016/j.jpowsour.2012.01.117
[18] Shaigan, N., Qu, W., Ivey, D.G. & Chen, W., A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects. Journal of Power Sources, 195(6), pp. 1529–1542, 2010. https:// doi.org/10.1016/j.jpowsour.2009.09.069
[19] Solovyev, A.A., Shipilova, A.V., Ionov, I.V., Kovalchuk, A.N., Rabotkin, S.V. & Oskirko, V.O., Magnetron- sputtered YSZ and CGO electrolytes for SOFC. Journal of Electronic Materials, 45(8), pp. 3921–3928, 2016. https://doi.org/10.1007/s11664-016-4462-0
[20] Yushina, L.D., Solid Oxide Electrolyte Films, Yekaterinburg: RIO UB RAS, 2012.
[21] Dunyushkina, L.A., Introduction into Fabrication of Thin Electrolyte Films for Solid Oxide Fuel Cells: Monograph, Yekaterinburg: UB RAS, 2015.
[22] Zhitomirsky, I., Cathodic electrodeposition of ceramic and organoceramic materials. Fun- damental aspects. Advances in Colloidal and Interface Science, 97(1–9), pp. 279–317, 2002. https://doi.org/10.1016/s0001-8686(01)00068-9
[23] Besra, L. & Liu, M., A review on fundamentals and applications of electrophoretic deposition (EPD). Progress in Materials Science, 52(1), pp. 1–61, 2007. https://doi. org/10.1016/j.pmatsci.2006.07.001
[24] Aznami, I., Mah, J.C.W., Muchtar, A., Somlu, M.R. & Ghazali, M.J., A review of key parameters for effective electrophoretic deposition in the fabrication of solid oxide fuel cells. Journal of Zhejiang University-Science A, 19(11), pp. 811–823, 2018. https://doi. org/10.1631/jzus.a1700604
[25] Hansch, R., Chowdhury M.R.R. & Menzler, N.H., Screen printing of sol–gel-derived electrolytes for solid oxide fuel cell (SOFC) application. Ceramics International, 35(2), pp. 803–811, 2009. https://doi.org/10.1016/j.ceramint.2008.02.020
[26] Park, S., Gorte, R.J. & Vohs, J.M., Tape cast solid oxide fuel cells for the direct oxidation of hydrocarbons. Journal of the Electrochemical Society, 148(5), pp. A443–A447, 2001. https://doi.org/10.1149/1.1362538
[27] Jean, J.H., Chang, C.R. & Chen Z.C., Effect of densification mismatch on cam- ber development during cofiring of nickel-based multilayer ceramic capacitors. Journal of the American Ceramic Society, 80(9), pp. 2401–2406, 2005. https://doi. org/10.1111/j.1151-2916.1997.tb03132.x
[28] Medvedev, D., Lyagaeva, J., Vdovin, G., Beresnev, S., Demin, A. & Tsiakaras, P., A tape calendering method as an effective way for the preparation of proton ceramic fuel cells with enhanced performance. Electrochemica Acta, 210, pp. 681–688, 2016. https://doi. org/10.1016/j.electacta.2016.05.197
[29] Minh, N.Q., Solid oxide fuel cell technology-features and applications. Solid State Ionics, 174(1–4), pp. 271–277, 2004. https://doi.org/10.1016/j.ssi.2004.07.042
[30] Sun, H., Zhang, Y., Gong, H., Li, Q., By, Y. & Li, T., Anode-supported SOFCs based on Sm0.2Ce0.8O2− electrolyte thin-films fabricated by co-pressing using microwave combustion synthesized powders. Ceramics International, 42(3), pp. 4285–4289, 2016. https://doi.org/10.1016/j.ceramint.2015.11.105
[31] Dailly, J., Marrony, M., Taillades, G., Taillades-Jacquin, M., Grimaud, A., Mauvy, F. & Salmi, J., Evaluation of proton conducting BCY10-based anode supported cells by co-pressing method: Up-scaling, performances and durability. Journal of Power Sources, 255, pp. 302–307, 2014. https://doi.org/10.1016/j.jpowsour.2013.12.082
[32] Taillades, G., Pers, P., Mao, V. & Taillades, M., High performance anode-supported proton ceramic fuel cell elaborated by wet powder spraying. International Journal of Hydrogen Energy, 41(28), pp. 12330–12336, 2016. https://doi.org/10.1016/j. ijhydene.2016.05.094
[33] Garcia-Giron, A., Sola, D. & Peria, J.I., Liquid-assisted laser ablation of advanced ceramics and glass-ceramic materials. Applied Surface Science, 363, pp. 548–554, 2016. https://doi.org/10.1016/j.apsusc.2015.12.079
[34] Virbukas, D. & Laukaitis, G., The structural and electrical properties of samarium doped ceria films formed by e-beam deposition technique. Solid State Ionics, 302, pp. 107–112, 2017. https://doi.org/10.1016/j.ssi.2016.12.003
[35] Tanhaei, M. & Mozammel, M., Yttria-stabilized zirconiz thin film electrolyte deposited by EB-PVD on porous anode support for SOFC applications. Ceramics International, 43(3), pp. 3035–3042, 2017. https://doi.org/10.1016/j.ceramint.2016.11.097
[36] Rezugina, E., Thomann, A.L., Hidalgo, H., Brault, P., Dolique, V. & Tessier, Y., Ni-YSZ films deposited by reactive magnetron sputtering for SOFC applications. Surface & Coatings Technology, 204(15), pp. 2376–2380, 2010. https://doi.org/10.1016/j.surf- coat.2010.01.006
[37] Rauch, J., Bolelli, G., Killinger, A, Gadow, R., Cannillo, V. & Lusvarghi, L., Advances in high velocity suspension flame spraying (HVSFS). Surface & Coatings Technology, 203(15), pp. 2131–2138, 2009. https://doi.org/10.1016/j.surfcoat.2008.12.002
[38] Yuan, K., Zhu, J., Dong, W., Yu, Y., Lu, X., Ji, X. & Wang, X., Applying Low-Pressure Plasma Spray (LPPS) for coatings in low-temperature SOFC. International Journal of Hydrogen Energy, 42(34), pp. 22243–22249, 2017. https://doi.org/10.1016/j. ijhydene.2017.04.215
[39] Berghaus, J.O., Legoux, J.G., Moreau, C., Hui, R., Decès-Petit, C., Qu, W. & Ghosh, D., Suspension HVOF Spraying of Reduced Temperature Solid Oxide Fuel Cell Electrolytes. Journal of Thermal Spray Technology, 17(5–6), pp. 700–707, 2008. https://doi.org/10.1007/s11666-008-9249-2
[40] Ma, X.Q., Zhang, H., Dai, J., Roth, J., Hui, R., Xiao, T.D. & Reisner, D.E., Intermediate temperature solid oxide fuel cell based on fully integrated plasma-sprayed components. Journal of Thermal Spray Technology, 14(1), pp. 61–66, 2005. https://doi. org/10.1361/10599630522710
[41] Marcano, D., Mauer, G., Vaßen, R. & Weber, A., Manufacturing of high performance solid oxide fuel cells (SOFCs) with atmospheric plasma spraying (APS) and plasma spray-physical vapor deposition (PS-PVD). Surface & Coatings Technology, 318, pp. 170–177, 2017. https://doi.org/10.1016/j.surfcoat.2016.10.088
[42] Puranen, J., Pihlatie, M., Lagerbom, J., Salminen, T., Laakso, J., Hyvärinen, L. & Vuoristo, P., Influence of powder composition and manufacturing method on electrical and chromium barrier properties of atmospheric plasma sprayed spinel coatings pre-pared from MnCo2O4 and Mn2CoO4+Co powders on Crofer 22 APU interconnectors. International Journal of Hydrogen Energy, 39(30), pp. 17246–17257, 2014. https://doi.org/10.1016/j.ijhydene.2014.08.016
[43] Pederson, L.R., Singh, P. & Zhou, X.D., Application of vacuum deposition methods to solid oxide fuel cells. Vacuum, 80(10), pp. 1066–1083, 2006. https://doi.org/10.1016/j. vacuum.2006.01.072
[44] Itoh, H., Mori, M., Mori, N. & Abe, T., Production cost estimation of solid oxide fuel-cells. Journal of Power Sources, 49(1–3), pp. 315–332, 1994. https://doi. org/10.1016/0378-7753(93)01831-2
[45] Meng, G., Song, H., Dong, Q. & Peng, D., Application of novel aerosol-assisted chemical vapor deposition techniques for SOFC thin films. Solid State Ionics, 175(1–4), pp. 29–34, 2004. https://doi.org/10.1016/j.ssi.2004.09.038
[46] Hermawan, E., Lee, G.S., Kim, G.S., Ham, H.C., Han, J.H. & Yoon S.P., Densification of an YSZ electrolyte layer prepared by chemical/electrochemical vapor deposition for metal-supported solid oxide fuel cells. Ceramics International, 43(13), pp. 10450–10459, 2017. https://doi.org/10.1016/j.ceramint.2017.05.085
[47] Chopade, S.S., Nayak, C., Bhattacharyya, D., Jha, S.N., Tokas, R.B., Sahoo, N.K. & Rao, G.M., RF plasma enhanced MOCVD of yttria stabilized zirconia thin films using octanedionate precursors and their characterization. Applied Surface Science, 355, pp. 82–92, 2015. https://doi.org/10.1016/j.apsusc.2015.07.090
[48] Choy, K.L., Chemical vapour deposition of coatings. Progress in Materials Science, 48(2), pp. 57–170, 2003. https://doi.org/10.1016/s0079-6425(01)00009-3
[49] Van Dieten, V.E.J. & Schoonman, J., Thin film techniques for solid oxide fuel cells. Solid State Ionics, 57(1–2), pp. 141–145, 1992. https://doi.org/10.1016/0167- 2738(92)90076-2
[50] Kikuchi, K., Tamazaki, F., Okada, K. & Mineshige, A., Yttria-stabilized zirconia thin films deposited on NiO-(Sm2O3)(0.1)(CeO2)(0.8) substrates by chemical vapour infiltration. Journal of Power Sources, 162(2), pp. 1053–1059, 2006. https://doi. org/10.1016/j.jpowsour.2006.08.023
[51] Johnson, R.W., Hultqvist, A. & Bent, S.F., A brief review of atomic layer deposition: from fundamentals to applications. Materialstoday, 17(5), pp. 236–246, 2014. https:// doi.org/10.1016/j.mattod.2014.04.026
[52] Perednis, D. & Gauckler L.J., Solid oxide fuel cells with electrolytes prepared via spray pyrolysis. Solid State Ionics, 166(3–4), pp. 229–239, 2004. https://doi.org/10.1016/j. ssi.2003.11.011
[53] Liu, Y., Compson, C. & Liu, M.L., Nanostructured and functionally graded cathodes for intermediate temperature solid oxide fuel cells. Journal of Power Sources. 138(1–2), pp. 194–198, 2004. https://doi.org/10.1016/j.jpowsour.2004.06.035
[54] Dos Santos-Gómez, L., Hurtado, J., Porras-Vázquez, J.M., Losilla, E.R. & Marrero- López, D., Durability and performance of CGO barriers and LSFC cathode deposited by spray-pyrolisis. Journal of the European Ceramic Society, 38(10), pp. 3518–3526, 2018. https://doi.org/10.1016/j.jeurceramsoc.2018.03.024
[55] Engels, J., Griesche, D., Waser, R. & Schneller, T., Thin film proton conducting mem- branes for micro-solid oxide fuel cells by chemical solution deposition. Thin Solid Films, 636, pp. 446–457, 2017. https://doi.org/10.1016/j.tsf.2017.06.038
[56] Kuzmin, A.V., Stroeva, A.Y., Plekhanov, M.S., Gorelov, V.P. & Farlenkov, A.S., Chemical solution deposition and characterization of the La1-xSrxScO3- thin films on La1-xSrxMonO3- substrate. International Journal of Hydrogen Energy, 43(41), pp. 19206–19212, 2018. https://doi.org/10.1016/j.ijhydene.2018.08.114
[57] Morales, M., Navarro, M.E., Capdevila, X.G., Roa, J.J. & Segarra, M., Processing of graded anode-supported micro-tubular SOFCs based on samaria-doped ceria via gel-casting and spray-coating. Ceramics International, 38(5), 3713–3722, 2012. https:// doi.org/10.1016/j.ceramint.2012.01.015
[58] Antunes, F.C., Goulart, C.A., Andreeta, M.R.B. & de Souza D.P.F., YSZ/Al2O3 mul- tilayer thick films deposited by spin coating using ceramic suspensions on Al2O3 polycrystalline substrate. Materials Science and Engineering: B, 228, pp. 60–66, 2018. https://doi.org/10.1016/j.mseb.2017.11.007
[59] Torabi, A., Etsell, T.H. & Sarkar, P., Dip coating fabrication process for micro-tubular SOFCs. Solid State Ionics, 192(1), pp. 372–375, 2011. https://doi.org/10.1016/j. ssi.2010.09.050
[60] Hedayat, N., Panthi, D. & Du, Y., Fabrication of anode-supported microtubular solid oxide fuel cells by sequential dip-coating and reduced sintering steps. Electrochemica Acta, 258, pp. 694–702, 2017. https://doi.org/10.1016/j.electacta.2017.11.115
[61] Jamil, Z., Ruiz-Trejo, E., Boldrin, P. & Brandon, N.P., Anode fabrication for solid oxide fuel cells: Electroless and electrodeposition of nickel and silver into doped ceria scaffolds. International Journal of Hydrogen Energy, 41(22), pp. 9627–9637, 2016. https://doi.org/10.1016/j.ijhydene.2016.04.061
[62] Ursaki, V.V., Lair, V., Żivković, L., Cassir, M., Ringuedé, A. & Lupan, O., Optical properties of Sm-doped ceria nanostructured films grown by electrodeposition at low temperature. Optical materials, 34(11), pp. 1897–1901, 2012. https://doi.org/10.1016/j. optmat.2012.05.026
[63] Ananyev, M.V., Solodyankin, A.A., Eremin, V.A., Farlenkov, A.S., Khodimchuk, A.V., Fetisov, A.V. & Zaikov, Y.P., Protective coatings La–Mn–Cu–O for stainless-steel interconnector 08Х17Т for SOFC, obtained by the electrocrystallization method from non-aqueous solutions. Russian Journal of Non-ferrous Metals, 59(1), pp. 102–110, 2018. https://doi.org/10.3103/s1067821218010029
[64] Park, B.K., Song, R.H., Lee, S.B., Lim, T.H., Park, S.J., Jung, W. & Lee, J.W., Conformal bi-layered perovskite/spinel coating on a metallic wire network for solid oxide fuel cells via an electrodeposition-based route. Journal of Power Sources, 348, pp. 40–47, 2017. https://doi.org/10.1016/j.jpowsour.2017.02.080
[65] Lawlor, V., Review of the micro-tubular solid oxide fuel cell (Part II: Cell design issues and research activities). Journal of Power Sources, 240, pp. 421–441, 2013. https://doi. org/10.1016/j.jpowsour.2013.03.191
[66] Jamil, S.M., Othman, M.H.D., Rahman, M.A., Jaafar, J., Ismail, A.F. & Li, K., Recent fabrication techniques for micro-tubular solid oxide fuel cell support: A review. Journal of the European Ceramic Society, 35(1), pp. 1–22, 2015. https://doi.org/10.1016/j.jeur- ceramsoc.2014.08.034
[67] Yu, F.A., Wu, C.C.,Yeh, T.H. & Cherng J.S., Effects of layer thickness on the performance of micro-tubular solid oxide fuel cells made by sequential aqueous electrophoretic deposition. International Journal of Hydrogen Energy, 40(40), pp. 14072–14076, 2015. https://doi.org/10.1016/j.ijhydene.2015.05.191
[68] Sarkar, P., Yamarte, L., Rho, H. & Johanson, L., Anode-supported tubular micro-solid oxide fuel cell. International Journal of Applied Ceramic Technology, 4(2), pp. 103–108, 2007. https://doi.org/10.1111/j.1744-7402.2007.02129.x
[69] Zarabian, M., Yar, A.Y., Vafaeenezhad, S., Faghihi Sani, M.A. & Simchi, A., Electrophoretic deposition of functionally-graded NiO–YSZ composite films. Journal of the European Ceramic Society, 33(10), pp. 1815–1823, 2013. https://doi.org/10.1016/j. jeurceramsoc.2013.01.032
[70] Matsuda, M., Hashimoto, M., Matsunaga, C., Suzuki, T.S., Sakka, Y. & Uchikoshi, T., Electrophoretic fabrication of a-b plane oriented La2NiO4 cathode onto electrolyte in
strong magnetic field for low-temperature operating solid oxide fuel cell. Journal of the European Ceramic Society, 36(16), pp. 4077–4082, 2016. https://doi.org/10.1016/j. jeurceramsoc.2016.06.043
[71] Mirzaei, M., Simchi, A., Faghihi-Sani, M.A. & Yazdanyar, A., Electrophoretic deposition and sintering of a nanostructured manganese-cobalt spinel coating for solid oxide fuel cell interconnects. Ceramics Internatonal, 42(6), pp. 6648–6656, 2016. https://doi.org/10.1016/j.ceramint.2016.01.012
[72] Waluyo, N.S., Song, R.H., Lee, S.B., Lim, T.H., Park, S.J. & Lee, J.W., Electrophoretically
deposited LaNi0.6Fe0.4O3 perovskite coatings on metallic interconnects for solid oxide fuel cells. Journal of Electrochemical Society, 163(10), pp. F1245–F1250, 2016. https:// doi.org/10.1149/2.1171610jes
[73] Kalinina, E.G., Pikalova, E.Y., Kolchugin, A.A., Pikalov, S.M. & Kaigorodov, A.S., Cyclic electrophoretic deposition of electrolyte thin-films on the porous cathode sub- strate utilizing stable suspensions of nanopowders. Solid State Ionics, 302, pp. 126–132, 2017. https://doi.org/10.1016/j.ssi.2017.01.016
[74] Das, D. & Basu, R., Suspension Chemistry and Electrophoretic Deposition of Zirconia Electrolyte on Conducting and Non-Conducting Substrates. Materials Research Bulletin, 48(9), pp. 3254–3261, 2013. https://doi.org/10.1016/j.materres- bull.2013.05.034
[75] Aznam, I., Mah, J.C.W., Muchtar, A., Somalu, M.R. & Ghazali, M.J., A review of key parameters for effective electrophoretic deposition in the fabrication of solid oxide fuel cells. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 19(11), pp. 811–823, 2018. https://doi.org/10.1631/jzus.a1700604
[76] Kotov, Y.A., Osipov, V.V., Samatov, O.M., Ivanov, M.G., Platonov, V.V., Murzakaev, A.M. & Timoshenkova, O.R., Properties of powders produced by evaporation CeO2/ Gd2O3 targets exposed to pulsed-periodic radiation of a CO2 laser. Technical Physics, 49(3), pp. 352–357, 2004. https://doi.org/10.1134/1.1688424
[77] Kotov, Y.A., Osipov, V.V., Ivanov, M.G., Samatov, O.M., Platonov, V.V., Lisenkov, V.V. & Timoshenkova, O.R., Properties of YSZ and CeGdO nanopowders prepared by target evaporation with a pulse-repetitive CO2-laser. Reviews on Advanced Materials Science, 5, pp. 171–177, 2003.
[78] Ivanov, M., Kotov, Y., Lisenkov, V., Osipov, V., Platonov, V. & Solomonov, V., Laser synthesis of oxide nanopowders. Advances in Science and Technology, 45, pp. 291–296, 2006. https://doi.org/10.4028/www.scientific.net/ast.45.291
[79] Pikalova, E.Y., Nikonov, A.V., Zhuravlev, V.D., Bamburov, V.G., Samatov, O.M., Lipilin, A.S. & Molchanova, N.G., Effect of the synthesis technique on the physico- chemical properties of Ce0.8(Sm0.75Sr0.2Ba0.05)0.2O2−. Inorganic Materials, 47(4), pp. 396–401, 2011. https://doi.org/10.1134/s0020168511040170
[80] Kalinina, E.G., Samatov, O.M. & Safronov, A.P. Stable suspensions of doped ceria nanopowders for electrophoretic deposition of coatings for solid oxide fuel cells. Inor- ganic Materials, 52(8), pp. 858–864, 2016. https://doi.org/10.1134/s0020168516080094
[81] Uchikoshi, T., Ozawa, K., Hatton, B.D. & Sakka, Y., Dense, bubble-free ceramic deposits from aqueous suspensions by electrophoretic deposition. Journal of Materials Research, 16(2), pp. 321–324, 2001. https://doi.org/10.1557/jmr.2001.0048
[82] Cherng, J.S., Sau, J.R. & Chung, C.C., Aqueous electrophoretic deposition of YSZ electrolyte layers for solid oxide fuel cells. Journal of Solid State Electrochemistry, 12(7–8), pp. 925–933, 2008. https://doi.org/10.1007/s10008-007-0458-2
[83] Chen, F. & Liu, M., Preparation of yttria-stabilized zirconia (YSZ) films on La0.85Sr0.15MnO3 (LSM) and LSM-YSZ substrates using an electrophoretic deposition (EPD) process. Journal of the European Ceramic Society, 21(2), pp. 127–134, 2001. https://doi.org/10.1016/s0955-2219(00)00195-3
[84] Negishi, H., Yamaji, K., Sakai, N., Horita, T., Yanagishita, H. & Yokokawa, H., Electro- foretic deposition ofYSZ powders for solid oxide fuel cells. Journal of Materials Science, 39(3), pp. 833–838, 2004. https://doi.org/10.1023/b:jmsc.0000012911.86185.13
[85] Aruna, S.T. & Rajam, K.S., A study on the electrophoretic deposition of 8YSZ coat- ing using mixture of acetone and ethanol solvents. Materials Chemistry and Physics, 111(1), pp.131–136, 2008. https://doi.org/10.1016/j.matchemphys.2008.03.035
[86] Ichiboshi, H., Myoujin, K., Kodera, N. & Ogihara, T., Preparation of Ce0.8Sm0.2O1.9 Thin Films by Electrophoretic Deposition and their Fuel Cell Performance. Key
Engineering Materials, 566, pp. 137–140, 2013. https://doi.org/10.4028/www.scien- tific.net/kem.566.137
[87] Xu, H., Shapiro, I.P. & Xiao, P., The influence of pH on particle packing in YSZ coat- ings electrophoretically deposited from a non-aqueous suspension. Journal of the European Ceramic Society, 30(5), pp. 1105–1114, 2010. https://doi.org/10.1016/j.jeur- ceramsoc.2009.07.021
[88] Kalinina, E.G., Pikalova, E.Y., Menshikova, A.V. & Nikolaenko, I.V., Electrophoretic deposition of a self-stabilizing suspension based on a nanosized multi-component electrolyte powder prepared by the laser evaporation method. Solid State Ionics, 288, pp. 110–114, 2016. https://doi.org/10.1016/j.ssi.2015.12.008
[89] López-Robledo, M.J., Silva-Treviño, J., Molina, T. & Moreno, R., Colloidal stability of gadolinium-doped ceria powder in aqueous and non-aqueous media. Journal of the European Ceramic Society, 33(2), 297–303, 2013. https://doi.org/10.1016/j.jeur- ceramsoc.2012.08.027
[90] Safronov, A.P., Kalinina, E.G., Smirnova, T.A., Leiman, D.V. & Bagazeev A.V., Self- stabilization of aqueous suspensions of alumina nanoparticles obtained by electrical explosion. Russian Journal of Physical Chemistry A, 84(12), pp. 2122–2127, 2010. https://doi.org/10.1134/s0036024410120204
[91] Kalinina, E.G., Lyutyagina, N.A., Safronov, A.P. & Buyanova, E.S., Electrophoretic deposition of Y2O3-stabilized ZrO2 nanoparticles on the surface of dense La0.7Sr0.3MnO3- cathodes produced by pyrolysis and solid-state reaction. Inorganic Materials, 50(2), pp. 184–190, 2014. https://doi.org/10.1134/s0020168514010099
[92] Kalinina, E.G., Safronov, A.P. & Kotov, Y.A., Formation of thin YSZ electrolyte films by electrophoretic deposition on porous cathodes. Russian Journal of Electrochemistry, 47(6), pp. 671–675, 2011. https://doi.org/10.1134/s1023193511060036
[93] Besra, L., Compson, C. & Liu, M., Electrophoretic deposition on non-conducting substrates: The case of YSZ film on NiO–YSZ composite substrates for solid oxide fuel cell application. Journal of Power Sources, 173(1), pp.130–136, 2007. https://doi. org/10.1016/j.jpowsour.2007.04.061
[94] Hu, S., Li, W., Yao, M., Li, T. & Liu, X., Electrophoretic Deposition of Gadolinium-doped Ceria as a Barrier Layer on Yttrium-stabilized Zirconia Electro- lyte for SolidOxide Fuel Cells. Fuel Cells, 17(6), pp. 869–874, 2017. https://doi. org/10.1002/fuce.201700122
[95] Kalinina, E.G., Efimov, A.A. & Safronov, A.P., The influence of nanoparticle aggrega-tion on formation of ZrO2 electrolyte thin films by electrophoretic deposition. Thin Solid Films, 612, pp. 66–71, 2016. https://doi.org/10.1016/j.tsf.2016.05.039
[96] Ishihara, T., Sato, K. & Takita Y., Electrophoretic deposition of Y2O3-stabilized ZrO2 electrolyte films in solid oxide fuel cells. Journal of American Ceramic Society, 79(4), pp. 913–919, 1996. https://doi.org/10.1111/j.1151-2916.1996.tb08525.x
[97] Ishihara, T., Shimose, K., Kudo, T., Nishiguchi, H., Akbay, T. & Takita Y., Preparation of Yttria stabilized zirconia thin films on strontium doped LaMnO3 cathode substrates via electrophoretic deposition for solid oxide fuel cells. Journal of American Ceramic Society, 83(8), pp. 1921–1927, 2004. https://doi.org/10.1111/j.1151-2916.2000. tb01491.x
[98] Ivanov, V.V. et al., Electrophoretic formation of electrolyte layer on cathode surface of cathode supported SOFC. International Journal of Alternative Energy and Ecology (ISJAEE), 10(66), pp. 35–50, 2008.
[99] Horri, B.A., Selomulya, C. & Wang, H., Electrochemical characteristics and per- formance of anode-supported SOFCs fabricated using carbon microspheres as a pore-former. International Journal of Hydrogen Energy, 37(24), pp. 19045–19054, 2012. https://doi.org/10.1016/j.ijhydene.2012.10.005
[100] Matsuda, M., Hosomi, T., Murata, K., Fukui, T. & Miyake, M., Fabrication of bilayered YSZ/SDC electrolyte film by electrophoretic deposition for reduced-temperature operating anode-supported SOFC. Journal of Power Sources, 165(1), pp. 102–107, 2007. https://doi.org/10.1016/j.jpowsour.2006.11.087
[101] Cherng, J.S., Wu, C.C., Chen, W.H. & Yeh, T.H., Microstructure and performance of micro-tubular solid oxide fuel cells made by aqueous electrophoretic deposition. Ceramics International, 39, pp. S601–S604, 2013. https://doi.org/10.1016/j.cera- mint.2012.10.144
[102] Das, D., Bagchi, B. & Basu, R.N., Nanostructured zirconia thin film fabricated by electro- phoretic deposition technique. Journal of Alloys and Compounds, 693, pp. 1220–1230, 2017. https://doi.org/10.1016/j.jallcom.2016.10.088
[103] Meepho, M., Chuankrerkkul, N., Chauoon, S. & Pornprasertsuk, R., Process Optimization and Characterization of YSZ Thin Film Electrolyte on Anode Substrate Prepared by Electrophoretic Deposition Technique. Key Engineering Materials, 751, pp. 471–476, 2017. https://doi.org/10.4028/www.scientific.net/kem.751.471
[104] Kalinina, E.G., Efimov, A.A. & Safronov, A.P., Preparation of YSZ/Al2O3 composite coatings via electrophoretic deposition of nanopowders. Inorganic Materials, 52(12), pp. 1301–1306, 2016. https://doi.org/10.1134/s0020168516110054
[105] Mochales, C., Zehbe, R., Frank, S., Rahimi, F., Urbanska, A., Fleck, C. & Müller, W.D., Multilayered Ceramic Constructs Created by EPD. Key Engineering Materials, 654, pp. 122–126, 2015. https://doi.org/10.4028/www.scientific.net/kem.654.122
[106] Zehbe, R., Mochales, C., Radzik, D., Müller, W.D. & Fleck, C., Electrophoretic depo- sition of multilayered (cubic and tetragonal stabilized) zirconia ceramics for adapted crack deflection. Journal of the European Ceramic Society, 36(2), pp. 357–364, 2016. https://doi.org/10.1016/j.jeurceramsoc.2015.08.022
[107] Kalinina, E.G., Pikalova, E.Y. & Kolchugin, A.A., Formation of Bilayer Thin-Film Elec- trolyte on Cathode Substrate by Electrophoretic deposition. Russian Journal of Elec- trochemistry, 54(9), pp. 723–732, 2018. https://doi.org/10.1134/s1023193518090045
[108] Kalinina, E.G., Pikalova, E.Y. & Scherbinin, S.V., Electrical and mechanical properties of CeO2-based thin-film coatings obtained by electrophoretic deposition. Technical Physics, 63(11), pp. 1636–1641, 2018. https://doi.org/10.1134/s1063784218110130
[109] Medvedev, D., Lyagaeva, J., Plaksin, S., Demin, A. & Tsiakaras, P., Sulfur and carbon tolerance of BaCeO3–BaZrO3 proton-conducting materials. Journal of Power Sources, 273, pp. 716–723, 2015. https://doi.org/10.1016/j.jpowsour.2014.09.116
[110] Medvedev, D., Maragou, V., Pikalova, E., Demin, A. & Tsiakaras, P., Novel composite solid state electrolytes on the base of BaCeO3 and CeO2 for intermediate temperature electrochemical devices. Journal of Power Sources, 221, pp. 217–227, 2013. https:// doi.org/10.1016/j.jpowsour.2012.07.120
[111] Gong, Z., Sun, W., Cao, J., Shan, D., Wu, J. & Liu, W., Ce0.8Sm0.2O1.9 decorated with electron-blocking acceptor-doped BaCeO3 as electrolyte for low-temperature solid oxide fuel cells. Electrochemica Acta, 228, pp. 226–232, 2017. https://doi. org/10.1016/j.electacta.2017.01.065
[112] Bartolomeo, E.D., Zunic, M., Chevallier, L., D’Epifanio, A., Licoccia, S. & Traversa, E., Fabrication of proton conducting solid oxide fuel cell by using electrophoretic deposi- tion. ECS Transactions, 25(2), pp. 577–584, 2009. https://doi.org/10.1149/1.3205569
[113] Itagaki, Y., Yamamoto, Y., Aono, H. & Yahiro, H., Anode-supported SOFC with thin film of proton-conducting BaCe0.8Y0.2O3− by electrophoretic deposition. Journal of Ceramic Society of Japan, 125(6), pp. 528–532, 2017. https://doi.org/10.2109/ jcersj2.17048