OPEN ACCESS
Energy utility companies face trade-offs in navigating through today’s environmental challenges. On the one hand, they face intense political, social and environmental pressures to move toward adopt- ing energy systems that incorporate the use of renewable energy resources. By making this transition, they would contribute to carbon reduction and mitigate climate change. On the other hand, they need to coordinate their resources and become efficient when investing in new plants or upgrading existing production systems. This paper seeks to address the gains that utility companies can make when replacing older fossil-fuel-based plants with efficient combined heat and power (CHP) plants. We discuss the system effects from the changes in production of other units when new plants are constructed. Using one of the largest energy utility companies in Sweden, Fortum, as empirical point of departure, we analyzed the company’s transition from using coal and hydrocarbons to an increased use of renewables and waste incineration CHP. Our analysis was based on comprehensive production data on CO2, SOx and NOx emissions. Our findings suggest that primary energy consumption drops when older, less efficient fossil plants are substituted for new efficient CHP plants; this drop includes the effect on remaining production. The benefits in terms of primary energy savings might even be greater than what is achieved in meeting the goal of climate change abatement through reduced CO2 emissions; NOx and SOx emissions are decreased with new biomass CHPs. Waste incineration CHP increases NOx and SOx emissions, when there is less fossil fuel to replace after the use of biomass is extended. In both cases, economic efficiency increase as costs are reduced.
climate change abatement, district heating, environmental impact, primary energy conservation
[1] Fahlen, E. & Ahlgren, E.O., Accounting for external costs in a study of a Swedish district-heating system – an assessment of environmental policies. Energy Policy, 38, pp. 4909–4920, 2010. doi: http://dx.doi.org/10.1016/j.enpol.2010.03.049
[2] Sliggers, J., The need for more integrated policy for air quality, acidification and climate change: reactive nitrogen links them all. Environmental Science & Policy, 7, pp. 47–68, 2004. doi: http://dx.doi.org/10.1016/j.envsci.2003.10.005
[3] Wang, J., Jing, Y., Zhang, C. & Zhao, J., Review on multi criteria decision analysis in sustainable energy decision-making. Renewable and Sustainable Energy Reviews, 13, pp. 2263–2278, 2009. doi: http://dx.doi.org/10.1016/j.rser.2009.06.021
[4] Tiwary, A., Namdeo, A., Fuentes, J., Dore, A., Hu, Z. & Bell, M., Systems scale assess- ment of the sustainability implications of emerging green initiatives. Environmental Pollution, 182, pp. 213–223, 2013. doi: http://dx.doi.org/10.1016/j.envpol.2013.03.049
[5] Beylot, A. & Villeneuve, J., Environmental impacts of residual municipal solid waste incineration. A comparison of 110 French incinerators using a life cycle approach. Waste Management, 33, pp. 2781–2788, 2013. doi: http://dx.doi.org/10.1016/j.was- man.2013.07.003
[6] Koornneel, J., Ramirez, A., van Harmelen, T., van Horssen, A., Turkenburg, W. & Faaij, A., The impact of CO2 capture in the power and heat sector on the emissions of SO2, NOx, particulate matter, volatile organic compounds and NH3 in the Euro- pean Union. Atmospheric Environment, 44, pp. 1369–1385, 2010. doi: http://dx.doi.org/10.1016/j.atmosenv.2010.01.022
[7] Levihn, F., CO2 emissions accounting: Whether, how and when different allocation methods should be used. Energy, 68, pp. 811–818, 2014. doi: http://dx.doi.org/10.1016/j. energy.2014.01.098
[8] Levihn, F. & Nuur, C., Marginal abatement cost curves and abatement strategies: tak- ing option interdependency and investments unrelated to climate change into account. Energy, 76, pp. 336–344, 2014. doi: http://dx.doi.org/10.1016/j.energy.2014.08.025
[9] Egeskog, A., Hansson, J., Berndes, G. & Werner, S., Co-generation of biofuels for transportation and heat for district heating systems: an assessment of the nation possi- bilities in EU. Energy Policy, 37, pp. 5260–5272, 2009. doi: http://dx.doi.org/10.1016/j. enpol.2009.07.071
[10] Knutsson, D., Sahlin, J., Werner, S., Ekvall, T. & Ahlgren, E.O., HEATSPOT: a simu- lation tool for national district heating analysis. Energy, 31, pp. 278–293, 2006. doi: http://dx.doi.org/10.1016/j.energy.2005.02.005
[11] Knutsson, D., Werner, S. & Ahlgren, E.O., Combined heat and power in the Swed- ish district heating sector: impacts of green certificates and CO2 trading on new in-vestments. Energy Policy, 34, pp. 3942–3952, 2006. doi: http://dx.doi.org/10.1016/j.enpol.2005.09.015
[12] Nordin, O., Miljörapport för Värtaverket 2011, AB Fortum Värme samägt med Stockholm stad: Stockholm, 2012.
[13] Åkerlund, N., Miljörapport för Högdalenverket 2011 version 1, AB Fortum Värme samägt med Stockholm stad: Stockholm, 2012.
[14] VMK, Överenskommelse i Värmemarknadskomittén 2012: om synen på bokförda miljövärden för fastigheter uppvärmda med fjärrvärme. Justerad i januari 2013 med värden för 2012, Värmemarknadskomittén, ISBN 978-91-85775-14-9, 2013.
[15] Franco, A. & Diaz, A.R., The future challenges for ‘clean coal technologies’: joining efficiency increase and pollutant emission control. Energy, 34, pp. 348–354, 2006. doi: http://dx.doi.org/10.1016/j.energy.2008.09.012
[16] SLB, Förändrad och utökad verksamhet vid Värtverket år 2010: spridningsberäknin- gar av halter inandningsbara partiklar (PM10), käveoxid (NO2), Svaveloxid (SO2) ochväteklorid (HCL) samt deposition. Stockholms och Uppsala läns luftvårdsförbund, Re-port 2006: 3, February 2006.
[17] Levihn, F., Nuur, L., Laestadius, S., Marginal abatement cost curves and abatement strategies: taking option interdependency and investments unrelated to climate change into account. Energy, 76, pp. 336–344, 2014. doi: http://dx.doi.org/10.1016/j.ener- gy.2014.08.025
[18] Criqui, P., Mima, S. & Viguier, L., Marginal abatement cost of CO2 emission reduc- tions, geographical flexibility and concrete ceilings: an assessment using the POLESmodel. Energy Policy, 27, pp. 585–601, 1999. doi: http://dx.doi.org/10.1016/s0301-4215(99)00051-8
[19] Morris, J., Paltsev, S. & Reilly, J., Marginal Abatement Costs and Marginal Welfare Costs for Greenhouse Gas Emissions Reduction: Results from the EPPA Model, MIT Press: Cambridge, MA, 2008.