Impact of Gaseous No2 on P. Fluorescens Strain in the Membrane Adaptation and Virulence

Impact of Gaseous No2 on P. Fluorescens Strain in the Membrane Adaptation and Virulence

Ségolène Depayras Tatiana Kondakova Nadine Merlet-Machour Hermann J. Heipieper Magalie Barreau Chloé Catovic Marc Feuilloley Nicole Orange Cécile Duclairoir-Poc

Laboratory of Microbiology Signals and Microenvironment, LMSM EA 4312, University of Rouen, France

Cronan Lab, Department of Microbiology, University of Illinois, Urbana

Laboratory of Organic and analytical chemistry, COBRA UMR 6014, Team 1, University of Rouen, France

Microbial Processes Group, Department Environmental Biotechnology, UFZ Helmholtz Centre for Environmental Research, Germany

Available online: 
| Citation



Nowadays air pollution is increasing due to anthropogenic activity. Among all air pollutants, nitrogen oxides (NOx) such as NO  are predominant. It is well known that those compounds exhibit direct toxic effects on human health. However, microorganisms are also exposed to them, but the effect of NOx on the virulence of air microbiota is still poorly understood. In this study, we evaluated the impact of NO on the adaptability and virulence of an airborne strain of P. fluorescens, MFA76a, by exposition of this strain to 45 ppm of NO2. The growth kinetics and cultivability were analysed. A decrease of cultivability coupled with an increase of the lag phase was observed suggesting a potential toxicity of NO2. Since NOx particularly target lipids, the membrane permeability was assessed thanks to Live Dead tests and confocal microscopy. A significant alteration of membrane permeability was observed. Furthermore, more abundant bacterial aggregates were detected compared to the control. Thus, a lipidomic study was performed using MALDI-TOF MS Imaging coupled to HPTLC. Interestingly, bacteria exposed to NO  were lacking one putative glycerophospholipid molecule. In agreement with a previous study from Kondakova et al., these data demonstrate the adaptation potential of P. fluorescens MFAF76a to an air pollutant such as NO.


air pollution, antibiotic resistance, membrane, adaptation, P. fluorescens, toxicity


[1] DeLeon-Rodriguez, N., Lathem, T.L., Rodriguez-R. L.M., Barazesh, J.M., Anderson, B.E. et al., Microbiome of the upper troposphere: species composition and prevalence, effects of tropical storms, and atmospheric implications. Proceedings of the National Academy of Sciences of the United States of America, 110(7), pp. 2575–2580, 2013. DOI: 10.1038/ismej.2011.11.

[2] Dybwad, M., Granum, P. E., Bruheim, P. & Blatny, J. M., Characterization of airborne bacteria at an underground subway station. Applied and Environmental Microbiology, 78(6), pp. 1917–1929, 2012. DOI: 10.1128/AEM.07212-11.

[3] Šantl-Temkiv, T., Sahyoun, M., Finster, K., Hartmann, S., Augustin-Bauditz, S. et al., Characterization of airborne ice-nucleation-active bacteria and bacterial fragments. Atmospheric Environment, 109, 105–117, 2015. DOI: 10.1016/j.atmosenv.2015.02.060.

[4] World Health Organization, World Health Organization (WHO) guidelines for indoor air quality: selected pollutants (2010), Europe, (accessed 10 April 2017).

[5] European Environment Agency, Air quality in Europe – 2015 report, (accessed 30 November 2015).

[6] Burney, S., Caulfield, J.L., Niles, J.C., Wishnok, J.S., Tannenbaum, S.R., The chemistry of DNA damage from nitric oxide and peroxynitrite. Mutation Research, 424(1–2), pp. 37–49, 1999. DOI: 10.1016/S0027-5107(99)00006-8.

[7] Radi, R., Nitric oxide, oxidants, and protein tyrosine nitration. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 101(12), pp. 4003–4008, 2004. DOI: 10.1038/84859.

[8] Augusto, O., Bonini, M.G., Amanso, A.M., Linares, E., Santosn, C.C.X. et al., Nitrogen dioxide and carbonate radical anion: Two emerging radicals in biology. Free Radical Biology & Medicine, 32(9), pp. 841–859, 2002. DOI: 10.1016/S0891-5849(02)00786-4.Ségolène Depayras et al., Int. J. Environ. Impacts, Vol. 1, No. 2 (2018) 191

[9] Harrison, F., Microbial ecology of the cystic fibrosis lung. Microbiology, 153(Pt 4), pp. 917–923, 2007. DOI: 10.1099/mic.0.2006/004077-0.

[10] Cullen, L. & McClean, S., Bacterial adaptation during chronic respiratory infections. Pathogens, 4(1), pp. 66–89, 2015. DOI: 10.1074/jbc.R110.199703.

[11] Cribbs, S.K. & Beck, J.M., Microbiome in the pathogenesis of cystic fibrosis and lung transplant-related disease. Translational Research, 179, pp. 84–96, 2017. DOI: 10.1016/j.trsl.2016.07.022.

[12] Bodilis, J., Calbrix, R., Guérillon, J., Mérieau, A., Pawlak, B. et al., Phylogenetic relationships between environmental and clinical isolates of Pseudomonas fluorescens and related species deduced from 16S rRNA gene and OprF protein sequences. Systematic and Applied Microbiology, 27(1), pp. 93–108, 2004. DOI: 10.1078/0723-2020-00253.

[13] Duclairoir Poc, C., Verdon, J., Groboillot, A., Barreau, M., Toucourou, H. et al., Airborne fluorescent pseudomonads : What potential for virulence? International Journal of Current Microbiology and Applied Sciences, 3(8), pp. 708–722, 2014. ISSN: 2319-7706.

[14] Rossignol, G., Merieau, A., Guerillon, J., Veron, W., Lesouhaitier, O. et al., Involvement of a phospholipase C in the hemolytic activity of a clinical strain of Pseudomonas fluorescens. BMC Microbiology, 8, pp. 189, 2008. DOI: 10.1186/1471-2180-8-189.

[15] Kondakova, T., Catovic, C., Barreau, M., Nusser, M., Brenner-Weiss, G. et al., Response to gaseous NO2 air pollutant of P. fluorescens airborne strain MFAF76a and clinical strain MFN1032. Frontiers in Microbiology, 7, pp. 379, 2016. DOI: 10.1186/1471-2180-13-92.

[16] Kondakova, T., Merlet-Machour, N., Chapelle, M., Preterre, D., Dionnet, F. et al., A new study of the bacterial lipidome: HPTLC-MALDI-TOF imaging enlightening the presence of phosphatidylcholine in airborne Pseudomonas fluorescens MFAF76a. Research in Microbiology, 166(1), pp. 1–8, 2015. DOI: 10.1016/j.resmic.2014.11.003.

[17] Bligh, E.G. & Dyer, W.J., A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), pp. 911–917, 1959. DOI: 10.1139/o59-099.

[18] Fuchs, B., Schiller, J., Süß, R., Schürenberg, M., Suckau, D., A direct and simple method of coupling matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) to thin-layer chromatography (TLC) for the analysis of phospholipids from egg yolk. Analytical and Bioanalytical Chemistry, 389(3), pp. 827–834, 2007. DOI: 10.1007/s00216-007-1488-4.

[19] Morrison, W. & Smith, L., Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. Journal of Lipid Research, 5, pp. 600–608, 1954.

[20] Heipieper, H.J., Meulenbeld, G., van Oirschot, Q. & de Bont, J., Effect of environmental factors on the trans/cis ratio of unsaturated fatty acids in Pseudomonas putida S12. Applied and Environmental Microbiology, 62(8), pp. 2773–2777, 1996.

[21] Bellon-Fontaine, M.-N., Rault, J., van Oss, C.J., Microbial adhesion to solvents: a novel method to determine the electron-donor/electron-acceptor or Lewis acid-base proper-ties of microbial cells. Colloids Surfaces B: Biointerfaces, 7(1–2), pp. 47–53, 1996. DOI: 10.1016/0927-7765(96)01272-6.

[22] Bouffartigues, E., Moscoso, J.A., Duchesne, R., Rosay, T., Fito-Boncompte, L. et al., The absence of the Pseudomonas aeruginosa OprF protein leads to increased biofilm formation through variation in c-di-GMP level. Frontiers in Microbiology, 6, pp. 630, 2015. DOI: 10.3389/fmicb.2015.00630.

[23] Banerjee, D. & Stableforth, D., The treatment of respiratory pseudomonas infection in cystic fibrosis: what drug and which way? Drugs, 60(5), pp. 1053–1064, 2000. DOI: 10.2165/00003495-200060050-00006.

[24] Poole, K., Stress responses as determinants of antimicrobial resistance in Gramnegative bacteria. Trends in Microbiology, 20(5), pp. 227–234, 2012. DOI: 10.1016/j.tim.2012.02.004.

[25] Poole, K., Stress responses as determinants of antimicrobial resistance in Pseudomonas aeruginosa: multidrug efflux and more. Canadian Journal of Microbiology, 60(12), pp. 783–791, 2014. DOI: 10.1139/cjm-2014-0666.

[26] Deppisch, C., Herrmann, G., Graepler-Mainka, U., Wirtz, H., Heyder, S. et al., Gaseous nitric oxide to treat antibiotic resistant bacterial and fungal lung infections in patients with cystic fibrosis: a phase I clinical study. Infection, 44(4), pp. 513–520, 2016. DOI: 10.1371/journal.pone.0011044.

[27] Köhler, T., Michéa-Hamzehpour, M., Henze, U., Gotoh, N., Curty, L.K. et al., Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Molecular Microbiology, 23(2), pp. 345–354, 1997. DOI: 10.1046/j.1365-2958.1997.2281594.x.

[28] Sobel, M.L., Neshat, S., Poole, K., Mutations in PA2491 (mexS) promote MexT-dependent mexEF-oprN expression and multidrug resistance in a clinical strain of Pseudomonas aeruginosa. Journal of Bacteriol, 187(4), pp. 1246–1253, 2005. DOI: 10.1128/JB.187.4.1246-1253.2005.

[29] Pan, X., Dong, Y., Fan, Z., Liu, C., Xia, B. et al., In vivo host environment alters Pseu-domonas aeruginosa susceptibility to aminoglycoside antibiotics. Frontiers in Cellular and Infection Microbiology, 7, pp. 83, 2017. DOI: 10.1128/AAC.46.6.2035-2037.2002.

[30] Dioxyde d’azote: Données toxicologiques et environnementales, INERIS, 2011, http://www/ (accessed 2 March 2010).