In-situ monitoring of river surface water. Contributions and difficulties of optical methods

In-situ monitoring of river surface water. Contributions and difficulties of optical methods

Philippe Namour Marie-Noëlle Pons Stéphanie Wachs Xavier France 

Institut des Sciences Analytiques, UMR CNRS 5280, Université de Lyon 5 rue de la Doua, 69100 Villeurbanne, France

Laboratoire Réactions et Génie des Procédés, UMR CNRS 7274, Université de Lorraine, BP 20451, 54001 Nancy cedex, France

GEMCEA, 149 rue Gabriel Péri, 54500 Vandoeuvre-les-Nancy, France

Irstea, 5 rue de la Doua, 69100 Villeurbanne, France

Corresponding Author Email:,
30 June 2016
| Citation

Optical sensors, namely a submersible UV-visible spectrophotometer, a fluorescence probe for dissolved organic matter and a fluorimeter with a circulation cuvette dedicated to tryptophan-like fluorescence measurement have been deployed for the real-time monitoring of a periurban stream. Biofouling was a main issue for the UV-visible spectrophotometer and the tryptophan-like fluorimeter. However nitrates variation could be monitored by UV-vis spectroscopy based on the maximum of the second derivative of the spectrum in the UV-range.


dissolved organic matter, fluorescence, nitrates, UV-visible absorbance.

1. Introduction
2. Matériels et méthodes
3. Résultats

Les auteurs remercient l’ANR pour son aide financière dans le cadre du projet EPEC.


Assaad A., Pontvianne S., Corriou J.P., Pons M.N. (2015). Spectrophotometric characterization of dissolved organic matter in a rural watershed: the Madon River (N-E France). Environmental Monitoring and Assessment, vol. 187, n° 4, p. 88.

Bridgeman J., Bieroza M., Baker A. (2011). The application of fluorescence spectroscopy to organic matter characterisation in drinking water treatment. Reviews in Environmental Science and Bio-technology, vol. 10, n° 3, p. 277-290.

Ferree M.A., Shannon R.D (2001). Evaluation of a second derivative UV/visible spectroscopy technique for nitrate and total nitrogen analysis of wastewater samples. Water Research, vol. 35, n° 1, p. 327-332.

Galuszka A., Migaszewski Z.M., Namiesnik J. (2015). Moving your laboratories to the field -Advantages and limitations of the use of field portable instruments in environmental sample analysis. Environmental Research, vol. 140, p. 593-603.

Gutierrez A., Zhang Y., Assaad A., France X., Adouani N., Pons M.N. (2014). Assessment of field fluorometers. Water Science & Technology, vol. 70, n° 8, p. 1335-1340.

Hou D.B., Zhang J., Chen L., Huang R.J., Zhang G.X. (2013). Water quality analysis by uvvis spectroscopy: a review of methodology and application. Spectroscopy and Spectral Analysis, vol. 7, n° 33, p. 1839-1844.

Li Z.Y., Deen M.J., Kumar S., Selvaganapathy P.R. (2014). Raman spectroscopy for in-line water quality monitoring - instrumentation and potential. Sensors, vol. 14, n° 9, p. 17275-17303.

Ojeda C.B., Rojas F.S. (2009). Process Analytical Chemistry: Applications of Ultraviolet/Visible Spectrometry in Environmental Analysis: An Overview. Applied Spectroscopy Reviews, vol. 44, n° 3, p. 245-265.

Pons M.N., Potier O., Pontvianne S., Laurent N., France X., Battaglia P. (2011). Spectrophotometric characterization of human impacted surface waters in the Moselle watershed. Water Science & Technology, vol. 64, n° 3, p. 602-609.