Graphene-based Derivative As Interfacial Layer in Graphene/n-si Schottky Barrier Solar Cells

Graphene-based Derivative As Interfacial Layer in Graphene/n-si Schottky Barrier Solar Cells

Andrea GnisciGiuliana Faggio Giacomo Messina Laura Lancellotti Eugenia Bobeico Paola Delli Veneri Andrea Capasso Theodoros Dikonimos Nicola Lisi 

Department of Information Engineering, Infrastructures, and Sustainable Energy, University “Mediterranea” of Reggio Calabria, Reggio Calabria 89124, Italyn

ENEA, Portici Research Center, Portici, Naples 80055, Italy

Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea

ENEA, DTE PCU IPSE, Casaccia Research Centre, Rome 00123, Italy

Corresponding Author Email: 
andrea.gnisci@unirc.it
Page: 
144-150
|
DOI: 
https://doi.org/10.18280/ama_a.050307
Received: 
19 March 2018
|
Accepted: 
22 May 2018
|
Published: 
30 September 2018
| Citation

OPEN ACCESS

Abstract: 

In Schottky barrier solar cell (SBSC), the interface between absorber and front electrode plays a vital role for reducing the dark current, blocking the majority carriers injected into the electrode at forward bias, reducing surface recombination and passivating the silicon surface. In this respect, the addition of interfacial layer between the semiconductor absorber and the metal electrode can reflect into an improvement of the device performance.

Here we combine n-type crystalline silicon with stacks of graphene and graphene-based derivative (GBD) layers with different properties, in order to realize efficient SBSCs. Graphene layers with different structure, work function and electrical conductivity, were obtained by varying the chemical vapor deposition (CVD) parameters: conductive graphene films were grown at 1070 °C, GBD interfacial layers at 790 °C. The stacked structures were fabricated by the multiple transfer of these films. The films and the stacks were characterized by Raman spectroscopy. The device with the GBD interlayer (acting as hole transport layer) exhibits promising performances in terms of external quantum efficiency (EQE) and power conversion efficiency (PCE, ~5 %). Doping treatments with nitric acid vapor was performed and improved the cell PCE up to 6.7 %.

Keywords: 

CVD graphene, graphene-based derivative, photovoltaics, Raman spectroscopy, solar cell

1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusion
  References

[1] Lin Y, Li X, Xie D, Feng T, Chen Y, Song R, Tian H, Ren T, Zhong M, Wang K, Zhu H. (2013). Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function. Energy and Environmental Science 6(1): 108–115. https://doi.org/10.1039/C2EE23538B

[2] Tao L, Chen Z, Li X, Yan K, Xu JB. (2017). Hybrid graphene tunneling photoconductor with interface engineering towards fast photoresponse and high responsivity. npj 2D Materials and Applications 1(1): 19. https://doi.org/10.1038/s41699-017-0016-4

[3] Li X, Zhu M, Du M, Lv Z, Zhang L, Li Y, Yang Y, Yang T, Li X, Wang K, Zhu H, Fang Y. (2015). High detectivity graphene-silicon heterojunction photodetector. Small 12(5): 595-601. https://doi.org/10.1002/smll.201502336

[4] Li X, Zhu H, Wang K, Cao A, Wei J, Li C, Jia Y, Li Z, Li X, Wu D. (2010). Graphene-on-silicon schottky junction solar cells. Advanced Materials 22(25): 2743-2748. https://doi.org/10.1002/adma.200904383

[5] Ihm K, Lim JT, Lee KJ, Kwon JW, Kang TH, Chung S, Bae S, Kim JH, Hong BH, Yeom GY. (2010). Number of graphene layers as a modulator of the open-circuit voltage of graphene-based solar cell. Applied Physics Letters 97(3): 32113. https://doi.org/10.1063/1.3464319

[6] Ye Y, Dai L. (2012). Graphene-based Schottky junction solar cells. Journal of Materials Chemistry 22(46): 24224–24229. https://doi.org/10.1039/C2JM33809B

[7] An X, Liu F, Kar S. (2013). Optimizing performance parameters of graphene–silicon and thin transparent graphite–silicon heterojunction solar cells. Carbon 57329–337. https://doi.org/10.1016/j.carbon.2013.01.080

[8] Yu X, Yang L, Lv Q, Xu M, Chen H, Yang D. (2015). The enhanced efficiency of graphene-silicon solar cells by electric field doping. Nanoscale 7(16): 7072–7077. https://doi.org/10.1039/C4NR06677D

[9] Song Y, Li X, Mackin C, Zhang X, Fang W, Palacios T, Zhu H, Kong J. (2015). Role of interfacial oxide in high-efficiency graphene–silicon schottky barrier solar cells. Nano Letters 15(3): 2104–2110. https://doi.org/10.1021/nl505011f

[10] Miao X, Tongay S, Petterson MK, Berke K, Rinzler AG, Appleton BR, Hebard AF. (2012). High efficiency graphene solar cells by chemical doping. Nano Letters 12(6): 2745–2750. https://doi.org/10.1021/nl204414u

[11] Cui T, Lv R, Huang Z-H, Chen S, Zhang Z, Gan X, Jia Y, Li X, Wang K, Wu D, Kang F. (2013). Enhanced efficiency of graphene/silicon heterojunction solar cells by molecular doping. Journal of Materials Chemistry A 1(18): 5736–5740. https://doi.org/10.1039/C3TA01634J

[12] Zhang X, Xie C, Jie J, Zhang X, Wu Y, Zhang W. (2013). High-efficiency graphene/Si nanoarray Schottky junction solar cells via surface modification and graphene doping. Journal of Materials Chemistry A 1(22): 6593–6601. https://doi.org/10.1039/C3TA10203C

[13] Xie C, Zhang X, Ruan K, Shao Z, Dhaliwal SS, Wang L, Zhang Q, Zhang X, Jie J. (2013). High-efficiency, air stable graphene/Si micro-hole array Schottky junction solar cells. Journal of Materials Chemistry A 1(48): 15348–15354. https://doi.org/10.1039/C3TA13750C

[14] Li X, Xie D, Park H, Zhu M, Zeng TH, Wang K, Wei J, Wu D, Kong J, Zhu H. (2013). Ion doping of graphene for high-efficiency heterojunction solar cells. Nanoscale 5(5): 1945–1948. https://doi.org/10.1039/C2NR33795A

[15] Li X, Xie D, Park H, Zeng TH, Wang K, Wei J, Zhong M, Wu D, Kong J, Zhu H. (2013). Anomalous behaviors of graphene transparent conductors in graphene-silicon heterojunction solar cells. Advanced Energy Materials 3(8): 1029–1034. https://doi.org/10.1002/aenm.201300052

[16] Li YF, Yang W, Tu ZQ, Liu ZC, Yang F, Zhang LQ, Hatakeyama R. (2014). Schottky junction solar cells based on graphene with different numbers of layers. Applied Physics Letters 104(4): 43903. https://doi.org/10.1063/1.4863683

[17] Lancellotti L, Bobeico E, Capasso A, Lago E, Delli Veneri P, Leoni E, Buonocore F, Lisi N. (2016). Combined effect of double antireflection coating and reversible molecular doping on performance of few-layer graphene/n-silicon Schottky barrier solar cells. Solar Energy 127(Supplement C): 198–205. https://doi.org/https://doi.org/10.1016/j.solener.2016.01.036

[18] Shi E, Li H, Yang L, Zhang L, Li Z, Li P, Shang Y, Wu S, Li X, Wei J, Wang K, Zhu H, Wu D, Fang Y, Cao A. (2013). Colloidal antireflection coating improves graphene–silicon solar cells. Nano Letters 13(4): 1776–1781. https://doi.org/10.1021/nl400353f

[19] Feng T, Xie D, Lin Y, Zang Y, Ren T, Song R, Zhao H, Tian H, Li X, Zhu H, Liu L. (2011). Graphene based Schottky junction solar cells on patterned silicon-pillar-array substrate. Applied Physics Letters 99(23): 233505. https://doi.org/10.1063/1.3665404

[20] Yang L, Yu X, Xu M, Chen H, Yang D. (2014). Interface engineering for efficient and stable chemical-doping-free graphene-on-silicon solar cells by introducing a graphene oxide interlayer. Journal of Materials Chemistry A 2(40): 16877–16883. https://doi.org/10.1039/C4TA02216E

[21] Tsuboi Y, Wang F, Kozawa D, Funahashi K, Mouri S, Miyauchi Y, Takenobu T, Matsuda K. (2015). Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS2 thin film. Nanoscale 7(34): 14476–14482. https://doi.org/10.1039/C5NR03046C

[22] Xu D, He J, Yu X, Gao D, Ma L, Mu X, Zhong M, Xu Y, Ye J, Xu M, Yang D. (2017). Illumination-induced hole doping for performance improvement of graphene/n‐silicon solar cells with P3HT interlayer. Advanced Electronic Materials 3(3): 1600516. https://doi.org/10.1002/aelm.201600516

[23] Bhopal MF, Akbar K, Rehman MA, Lee D won, Rehman A ur, Seo Y, Chun SH, Lee SH. (2017). High-ĸ dielectric oxide as an interfacial layer with enhanced photo-generation for Gr/Si solar cells. Carbon 12556–62. https://doi.org/https://doi.org/10.1016/j.carbon.2017.09.038

[24] Alnuaimi A, Almansouri I, Saadat I, Nayfeh A. (2018). High performance graphene-silicon Schottky junction solar cells with HfO2 interfacial layer grown by atomic layer deposition. Solar Energy 164174–179. https://doi.org/10.1016/j.solener.2018.02.020

[25] Lancellotti L, Sansone L, Bobeico E, Lago E, Noce MD, Veneri PD, Borriello A, Casalino M, Coppola G, Giordano M, Iodice M. (2015). Graphene oxide as an interfacial layer in silicon based Schottky barrier solar cells. In: 2015 Fotonica AEIT Italian Conference on Photonics Technologies, pp 1–4.

[26] Xie C, Zhang X, Wu Y, Zhang X, Zhang X, Wang Y, Zhang W, Gao P, Han Y, Jie J. (2013). Surface passivation and band engineering: a way toward high efficiency graphene-planar Si solar cells. Journal of Materials Chemistry A 1(30): 8567–8574. https://doi.org/10.1039/C3TA11384A

[27] Ma J, Bai H, Zhao W, Yuan Y, Zhang K. (2018). High efficiency graphene/MoS2/Si Schottky barrier solar cells using layer-controlled MoS2 films. Solar Energy 16076–84. https://doi.org/10.1016/j.solener.2017.11.066

[28] Meng JH, Liu X, Zhang XW, Zhang Y, Wang HL, Yin ZG, Zhang YZ, Liu H, You JB, Yan H. (2016). Interface engineering for highly efficient graphene-on-silicon Schottky junction solar cells by introducing a hexagonal boron nitride interlayer. Nano Energy 2844–50. https://doi.org/10.1016/j.nanoen.2016.08.028

[29] Capasso A, De Francesco M, Leoni E, Dikonimos T, Buonocore F, Lancellotti L, Bobeico E, Sarto MS, Tamburrano A, De Bellis G, Lisi N. (2014). Cyclododecane as support material for clean and facile transfer of large-area few-layer graphene. Applied Physics Letters 105(11): 113101. https://doi.org/10.1063/1.4895733

[30] Capasso A, Dikonimos T, Sarto F, Tamburrano A, De Bellis G, Sarto MS, Faggio G, Malara A, Messina G, Lisi N. (2015). Nitrogen-doped graphene films from chemical vapor deposition of pyridine: influence of process parameters on the electrical and optical properties. Beilstein Journal of Nanotechnology 62028–2038. https://doi.org/10.3762/bjnano.6.206

[31] Capasso A, Salamandra L, Faggio G, Dikonimos T, Buonocore F, Morandi V, Ortolani L, Lisi N. (2016). Chemical vapor deposited graphene-based derivative as high-performance hole transport material for organic photovoltaics. ACS Applied Materials & Interfaces 8(36): 23844–23853. https://doi.org/10.1021/acsami.6b06749

[32] Faggio G, Capasso A, Messina G, Santangelo S, Dikonimos T, Gagliardi S, Giorgi R, Morandi V, Ortolani L, Lisi N. (2013). High-temperature growth of graphene films on copper foils by ethanol chemical vapor deposition. The Journal of Physical Chemistry C 117(41): 21569–21576. https://doi.org/10.1021/jp407013y

[33] Lisi N, Dikonimos T, Buonocore F, Pittori M, Mazzaro R, Rizzoli R, Marras S, Capasso A. (2017). Contamination-free graphene by chemical vapor deposition in quartz furnaces. Scientific Reports 7(1): 9927. https://doi.org/10.1038/s41598-017-09811-z

[34] Lancellotti L, Bobeico E, Capasso A, Noce M Della, Dikonimos T, Lisi N, Veneri PD. (2014). Effects of HNO3 molecular doping in graphene/Si Schottky barrier solar cells. In: 2014 Fotonica AEIT Italian Conference on Photonics Technologies. 1–3.

[35] Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK. (2006). Raman spectrum of graphene and graphene layers. Physical Review Letters 97(18): 187401. https://doi.org/10.1103/PhysRevLett.97.187401

[36] Santangelo S, Messina G, Malara A, Lisi N, Dikonimos T, Capasso A, Ortolani L, Morandi V, Faggio G. (2014). Taguchi optimized synthesis of graphene films by copper catalyzed ethanol decomposition. Diamond and Related Materials 4173–78. https://doi.org/10.1016/j.diamond.2013.11.006

[37] Ferrari AC. (2007). Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Communications 143(1): 47–57. https://doi.org/10.1016/j.ssc.2007.03.052

[38] Pimenta MA, Dresselhaus G, Dresselhaus MS, Cancado LG, Jorio A, Saito R. (2007). Studying disorder in graphite-based systems by Raman spectroscopy. Physical Chemistry Chemical Physics 9(11): 1276–1290. https://doi.org/10.1039/B613962K

[39] Seifert M, Vargas JEB, Bobinger M, Sachsenhauser M, Cummings AW, Roche S, Garrido JA. (2015). Role of grain boundaries in tailoring electronic properties of polycrystalline graphene by chemical functionalization. 2D Materials 2(2): 24008. https://doi.org/10.1088/2053-1583/2/2/024008

[40] Wang Y, Xu X, Lu J, Lin M, Bao Q, Özyilmaz B, Loh KP. (2010). Toward high throughput interconvertible graphane-to-graphene growth and patterning. ACS Nano 4(10): 6146–6152. https://doi.org/10.1021/nn1017389

[41] Tung RT. (2001). Recent advances in Schottky barrier concepts. Materials Science and Engineering: R: Reports 35(1): 1–138. https://doi.org/10.1016/S0927-796X(01)00037-7

[42] Tung RT. (2014). The physics and chemistry of the Schottky barrier height. Applied Physics Reviews 1(1): 11304. https://doi.org/10.1063/1.4858400

[43] Werner JH, Güttler HH. (1991). Barrier inhomogeneities at Schottky contacts. Journal of Applied Physics 69(3): 1522–1533. https://doi.org/10.1063/1.347243

[44] Di Bartolomeo A, Luongo G, Giubileo F, Funicello N, Niu G, Schroeder T, Lisker M, Lupina G. (2017). Hybrid graphene/silicon Schottky photodiode with intrinsic gating effect. 2D Materials 4(2): 25075. https://doi.org/10.1088/2053-1583/aa6aa0

[45] Lancellotti L, Bobeico E, Castaldo A, Delli Veneri P, Lago E, Lisi N. (2018). Effects of different graphene dopants on double antireflection coatings/graphene/n-silicon heterojunction solar cells. Thin Solid Films 64621–27. https://doi.org/10.1016/j.tsf.2017.11.018