How to Control the Structural Properties of Purely Siliceous MCM-41

How to Control the Structural Properties of Purely Siliceous MCM-41

Tewfik Ali-Dahmane Lamia Brahmi Rachida Hamacha Abdelkader Bengueddach 

Laboratoire de Chimie des Matériaux L.C.M., Université d'Oran I Ahmed Ben Bella, BP-1524 El-Mnaouer, 31000 Oran, Algeria.

École Supérieure cn Sciences Appliquées de Tlemcen (ESSAT), BP 165 RP Bel Horizon, 13000 Tlemcen, Algeria

Laboratoire de Chimie Fine L.C.F., Université d'Oran I Ahmed Ben Bella, BP-1524 El-Mnaouer, 31000 Oran, Algeria.

Page: 
149-163
|
DOI: 
https://doi.org/10.3166/acsm.40.149-163
Received: 
20 July 2016
| |
Accepted: 
22 December 2016
| | Citation

OPEN ACCESS

Abstract: 

This work deals with the possibility of improving the structural and tcxtural proprieties of MCM-41 only by playing with their synthesis reagents. To realize this study, three kind of silicas are chosen; colloidal silica (ludox); fumed silica and tetraethylorthosilicat (TEOS) and three kind of bases; sodium hydroxide (NaOII); tctramethylammonium hydroxide (TMAH) and tetraethylammonium hydroxide (TEAH). Each silica source is tested with three bases separately at three different temperatures 373 K. 403 K and 423 K. for duration of 48 h under hydrothermal treatment. As results we noticed when the hydrothermal treatment temperature increase leads to more stable materials by increasing their wall thickness. The use of organic bases promotes the increase of specific surface area, pore sizes and volume pores of MCM-41 materials.

1. Introduction
2. Experimental
3. Results and Discussions
4. Conclusion
  References

[1] Corma, Chem. Rev. 97(1997) 2373.

[2] A. Stein, B.J. Melde and R.C. Schroden, Adv. Mater. 12 (2000) 1403.

[3] M.E. Davis, Nature 417 (2002) 813.

[4] Y. Wan, H.F. Yang and D.Y. Zhao, Acc. Chem. Res. 39 (2006) 423.

[5] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli and J.S. Beck, Nature (1992) 359.

[6] J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu,

D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins and J.L. Schlenker, Am. Chem. Soc. 114(1992) 10834

[7] T. Yanagisawa, T. Shimizu, K. Kuroda and C. Kato, Bull. Chem. Soc. Jpn. 63 (1990) 988.

[8] R. Mokaya, Microporous Mesoporous Mater. 44-45 (2001) 119.

[9] S. Brunauer, P. Emmet and E. Teller, J. Am. Chem. Soc. 60 (1938) 309.

[10] A. Sayari, P. Liu, M. Krük and M. Jaroniec Chem. Mater. 9(1997) 2499 .

[11] E.P. Barret, L.G. Joyer and P.P. Halenda, J.Am. Chem. Soc. 73 (1951) 373.

[12] M. Kruk, M. Jaroniec A. Sayari, J. Phy. Chem. 101 (1997) 583.

[13] T. Dabadic, A. Ayral, C. Guizard, L. Cot and P. Lacan, J. Mater Chem. 6(1996) 178.

[14] R.K. Iler, Wiley, New York, 1979.

[15] H.H. Lee, J. Shibata and H.Kim, Resources Processing 54(2007) 116.

[16] J.W. sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquérol and T. Siemieniewska, Pure Appl. Chem. 57 (1985) 603.

[17] D. Das, C.M. Tsai and S. Cheng, Chem. Commun. (1999) 473.

[18] A. Badiei, R. Vahidifar and A. Hasheminasab, J. Chem. Chem. Eng. 27 (2008) 1.

[19] N. Thanabodeekija, S. Sadthayanona, E. Gularib and S. Wongkasemjita, Mater. Chem. Phys. 98(2006) 131