Characterization of Pbs/PMMA Nanocomposite Films Elaborated by Direct Inclusion Method

Characterization of Pbs/PMMA Nanocomposite Films Elaborated by Direct Inclusion Method

Azeddine Chelouche Abdenour Ait-Atmane Laid Hammiche Djamel Djouadi Tahar Touam Boubekeur Boudine 

Laboratoire de Genie de L'Environnement (LGE), Faculte dc Technologie, Université de Bejaia, Bejaia, 06000, Algeria

Laboratoire des Semi-conducteurs, University Badji Mokhtar, BP 12 Annaba, 23000, Algeria

Laboratoire de Eristallographie, University Constantine 1, 25000, Algeria

Page: 
143-148
|
DOI: 
https://doi.org/10.3166/acsm.40.143-148
Received: 
8 January 2016
|
Accepted: 
22 December 2016
|
Published: 
31 January 2017
| Citation

OPEN ACCESS

Abstract: 

PbS/PMMA nanocomposite films were prepared by dispersion of PbS crystallites in PMMA solution and dip-coatcd on glass substrates. The X-ray diffraction (XRD) results of the composite films show that the introduced PbS crystallites in PMMA matrix arc nanometric with cubic crystalline structure. Raman spectrometry analysis reveals a peak at 220 cm-1due to the PbS LO mode. Characterization by infrared spectroscopy of the PbS / PMMA nanocomposite films demonstrate the existence of an absorption band due to Pb-0 bond stretching vibration at 433 cm-1. The optical absorption measurements in the UV-visible-near infrared spectrum show the presence of several absorption bands. These results suggest that the introduction of PbS nanoparticles into PMMA matrix can be used as color centers in biological applications and medical imaging.

1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusion
  References

[1] C.N.R. Rao, A.K. Cheetham, J. Mater. Chem. 11 (2001) 2887-2894.

[2] C.N.R.Rao, A. Govindaraj, Nanotubes and Nanowires, Royal Soc. Chem. (London), 2005

[3] R.H.Baughman, A.A. Zakhidov, W.A. de Heer, Science, 297 (2002) 787-792.

[4] Z.L.Wang, Ann. Rev. Phys. Chem., 55 (2004) 159-196.

[5] I. Chakraborty, S.P.Moulik, J. Nanoparticle Res. $6(2004) 233-240$.

[6] S.A. McDonald, G. Konstantatos, S.Zhang, L.Levina, E.H.Sargent, Nat. Mater.4 (2005) 138-142.

[7] J.M.Benoit, B. Corraze, S. Lefrant, W. Blau, P. Bernier,O. Chauvet, Synth. Met, 121 ( 2001)1215-1216.

[8] D. Qian, E.C. Dickey, R. Andrews, and T. Rantell, Appl. Phys. Lett, 76(20) (2000) 2868-2870.

[9] A.R.Bhattacharyya, T.V.Sreckumar, T.Liu, S.Kumar, L. M.Ericson, R.H. Hauge, R.E. Smalley, Polymer $44(2003) 2373-2377$

[10] X.S.Zhang, X.Y.Dong, Y.G.Liu, G.Y Kai, Z.Wang, L. Li, X. Han, Y.Li, Optoelectron. Lett. 3 (2007) $7-338$

[11] R.Thielsch, T. Bohme, R. Reiche, D. Schlafer, H.D. Bauer, H.Bottcher, Nanostruct. Mater. 10

(1998)131-149. [12] X.S. Zhang, G.Y. Kai, L. Li, Y. Li, X.Han, Z.Wang, Y.G. Liu, X.Y. Dong, J. Optoelectron. Laser, 17 (2006)1487-1491.

[13] R. G. Pérez, G H. Téllez, U.P. Rosas, A. M.Torres, J. H. Tecorralco, L. C. Lima, O.P. Moreno, J. Mat.

Eng. $A 3(2013) 1-13$ [14] Ovsyannikov, S. V., Shchennikov, V. V., Cantarero,A., Cros, A., Titov, A. N., Mater. Sci.Eng. A $462(2007) 422-426$

[15] M. K. Murali, V. Balachandran, M. Murugan, M.Karnan, J. Basic and Appl. Phys. 1 (2012) 79-88.

[16] R. H. Mas, H. Mas, S. Kathiresan, S. Mohan, Der Pharma Chemica 2 (2010) 3 16-323.

[17] K. J.Thomas, M. Sheeba, V.P.N. Nampoori, C.P.G.Allabhan, P.Radhakrishnan, J. Opt. A: Pure Appl.

Opt. 10 (2008) 055303-055308.

[18] D. K. B. Renuka, R. Madivanane, Eng. Sci. Technol. $2(2012) 795-799$. [19] T.Lopez, P.Dosch, M.Asomoza, R. J. Gomez, Catal.133 (1992) 247-259.

[20] S. Umamaheswari, M. Murali, Chem. Engg. 64 (2013) 19159-19164.