A comprehensive review on heat transfer enhancement and pressure drop characteristics of nanofluid flow through micro-channels

A comprehensive review on heat transfer enhancement and pressure drop characteristics of nanofluid flow through micro-channels

Prathvi Raj Chauhan Rajan Kumar 

Department of Mechanical Engineering, DR. B.R.Ambedkar National Institute of Technology, Jalandhar, Punjab 144011, India

Corresponding Author Email: 
rajank@nitj.ac.in
Page: 
363-385
|
DOI: 
https://doi.org/10.3166/ACSM.42.363-385
Received: 
| |
Accepted: 
| | Citation

OPEN ACCESS

Abstract: 

The purpose of this study is to comprehensively review the experimental and numerical studies of heat transfer and pressure drop with different types of ribs and different types of working fluid through micro-channels. In micro-channels, by adding different metallic oxide nanoparticles in the base fluid considerably improve the heat transfer rates as compared to a base fluid, however, the increase in the friction factor is insignificant. The ribs, cavities, porous surfaces, dimple surfaces, and groove structures create the obstacles or disruptions in the flow field. It is analyzed that these obstacles inside the microchannel are helpful to augment the heat transfer rate due to better mixing with a small increase in pressure drop. The purpose of this review paper is to encourage the researchers to pay more attention in the field of heat transfer augmentation and lessening the pressure drop to improve the performance of the thermal system. Lastly, some ideas for future work are also explored

Keywords: 

nanofluid, micro-channel, heat transfer enhancement, pressure drop

1. Introduction
2. Review on experimental and numerical studies of pressure drop
3. Experimental and numerical study of heat transfer
4. Overall heat transfer analysis of Al2O3 and CuO at various volume concentration of nanofluids
5. Conclusions
Nomenclature
  References

Adham A. M., Mohd-Ghazali N., Ahmad R. (2012). Optimization of an ammonia-cooled rectangular microchannel heat sink using multi-objective non-dominated sorting genetic algorithm (NSGA2). Heat and Mass Transfer, Vol. 48, No. 10, pp. 1723-1733. https://doi.org/10.1007/s00231-012-1016-8

Ali O. A., Toghraie D., Karimipour A. (2016). Numerical simulation of heat transfer and turbulent flow of water nanofluids copper oxide in a rectangular microchannel with the semi-attached rib. Advances in Mechanical Engineering, Vol. 8, No. 4, pp. 1-25. https://doi.org/10.1177/1687814016641016

Anoop K., Sadr R., Yu J., Kang S., Jeon S., Banerjee D. (2012). Experimental study of forced convective heat transfer of nanofluids in a microchannel. International Communications in Heat and Mass Transfer, Vol. 39, No. 9, pp. 1325-1330. https://doi.org/10.1016/j.icheatmasstransfer.2012.07.023

Anoop K., Sundararajan T., Das S. K. (2009). Effect of particle size on the convective heat transfer in nanofluid in the developing region. International Journal of Heat and Mass Transfer, Vol. 52, No. 9, pp. 2189-2195. https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.063

Asirvatham L. G., Raja B., Mohan D., Wongwises S. (2011). Convective heat transfer of nanofluids with correlations. Particuology, Vol. 9, No. 6, pp. 626-631. https://doi.org/10.1016/j.partic.2011.03.014

Bejan A., Morega A. M. (1993). Optimal arrays of pin fins and plate fins in laminar forced convection. ASME Journal of Heat Transfer, Vol. 115, No. 1, pp. 75-81. https://doi.org/10.1115/1.2910672

Buongiorno J. (2006). Convective transport in nanofluids. Journal of Heat Transfer, Vol. 128, No. 3, pp. 240-250. https://doi.org/10.1115/1.2150834

Chai L., Xia G. D., Wang H. C. (2016). Numerical study of laminar flow and heat transfer in a microchannel heat sink with offset ribs on sidewalls. Applied Thermal Engineering, Vol. 92, pp. 32-41. https://doi.org/10.1016/j.applthermaleng.2015.09.071

Chandrasekar M., Suresh S. (2011). Experiments to explore the mechanisms of heat transfer in nanocrystalline alumina/water nanofluid under laminar and turbulent flow conditions. Experimental Heat Transfer, Vol. 24, No. 3, pp. 234-256. https://doi.org/10.1080/08916152.2010.523809

Chein R., Chuang J. (2007). Experimental microchannel heat sink performance studies using nanofluids. International Journal of Thermal Sciences, Vol. 46, No. 1, pp. 57-66. https://doi.org/10.1016/j.ijthermalsci.2006.03.009

Chen H., Yang W., He Y., Ding Y., Zhang L., Tan C., Lapkin A. A., Bavykin D. V. (2008). Heat transfer and flow behavior of aqueous suspensions of titanate nanotubes (nanofluids). Powder Technology, Vol. 183, No. 1, pp. 63-72. https://doi.org/10.1016/j.powtec.2007.11.014

Choi S. U. S., Zhang Z. G., Yu W., Lockwood F. E., Grulke E. A. (2001). Anomalously thermal conductivity enhancement in nanotube suspensions. Applied Physics Letters, Vol. 79, No. 14, pp. 2252-2254. https://doi.org/10.1063/1.1408272

Croce G., D'Agaro P. P. (2005). Numerical simulation of the roughness effect on microchannel heat transfer and pressure drop in laminar flow. Journal of Physics D: Applied Physics, Vol. 38, No. 10, pp. 1518. https://doi.org/10.1088/0022-3727/38/10/005

Cui J., Fu Y. (2012). A numerical study on pressure drops in microchannel flow with different bionic micro-grooved surfaces. Journal of Bionic Engineering, Vol. 9, No. 1, pp. 99-109. https://doi.org/10.1016/S1672-6529(11)60102-9

Ding Y., Alias H., Wen D., Williams R. A. (2006). Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). International Journal of Heat and Mass Transfer, Vol. 49, No. 1, pp. 240-250. https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.009

Eastman J. A., Choi S. U. S., Li S., Thompson L. J., Lee S. (1996). Enhancement thermal conductivity through the development of nanofluids. Materials Research Society (MRS), Boston, USA, 457. https://doi.org/10.1557/PROC-457-3

Ebrahimnia-Bajestan E., Moghadam M. C., Niazmand H., Daungthongsuk W., Wongwises S. (2016). Experimental and numerical investigation of nanofluids heat transfer characteristics for application in solar heat exchangers. International Journal of Heat and Mass Transfer, Vol. 92, pp. 1041-1052. https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.107

Elahmer M., Abboudi S., Boukadida N. (2017). Nanofluid effect on forced convective heat transfer inside a heated horizontal tube. International Journal of Heat and Technology, Vol. 35, No. 4, pp. 874-882. https://doi.org/10.18280/ijht.350424

Esmaeilzadeh E., Almohammadi H., NasiriVatan S., Omrani A. N. (2013). Experimental investigation of hydrodynamics and heat transfer characteristics of γ-Al2O3/water under laminar flow inside a horizontal tube. International Journal of Thermal Sciences, Vol. 63, pp. 31-37. https://doi.org/10.1016/j.ijthermalsci.2012.07.001

Fedorov A. G., Viskanta R. (2000). Three-dimensional conjugate heat transfer in the microchannel heat sink for electronic packaging. International Journal of Heat and Mass Transfer, Vol. 43, pp. 399-415. https://doi.org/10.1016/S0017-9310(99)00151-9

Han W. S., Rhi S. (2011). Thermal characteristics of the grooved heat pipe with hybrid nanofluids. Thermal Science, Vol. 15, No. 1, pp. 195-206. https://doi.org/10.2298/tsci100209056h

Harms T. M., Kazmierczak M. J., Cerner F. M. (1999). Developing convective heat transfer in deep rectangular microchannels. International Journal of Heat and Fluid Flow, Vol. 20, pp. 149-157. https://doi.org/10.1016/S0142-727X(98)10055-3

He Y., Jin Y., Chen H., Ding Y., Cang D., Lu H. (2007). Heat transfer and flow behavior of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. International Journal of Heat and Mass Transfer, Vol. 50, No. 11, pp. 2272-2281. https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.024

Heris S. Z., Etemad S. G., Esfahany M. N. (2006). Experimental investigation of oxide nanofluids laminar flow convective heat transfer. International Communications in Heat and Mass Transfer, Vol. 33, No. 4, pp. 529-535. https://doi.org/10.1016/j.icheatmasstransfer.2006.01.005

Heris S. Z., Etemad S. G., Esfahany M. N. (2009). Convective heat transfer of a Cu/water nanofluid flowing through a circular tube. Experimental Heat Transfer, Vol. 22, No. 4, pp. 217-227. https://doi.org/10.1080/08916150902950145

Heris S. Z., Noie S. H., Talaii E., Sargolzaei J. (2011). Numerical investigation of Al2O3/water nanofluid laminar convective heat transfer through triangular ducts. Nanoscale Research Letters, Vol. 6, No. 1, pp. 179. https://doi.org/10.1186/1556-276X-6-179

Heyhat M. M., Kowsary F., Rashidi A. M., Momenpour M. H., Amrollahi A. (2013). Experimental investigation of laminar convective heat transfer and pressure drop of water-based Al2O3 nanofluids in fully developed flow regime. Experimental Thermal and Fluid Science, Vol. 44, pp. 483-489. https://doi.org/10.1016/j.expthermflusci.2012.08.009

Ho C. J., Wei L. C., Li Z. W. (2010). An experimental investigation of the forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid. Applied Thermal Engineering, Vol. 30, No. 2, pp. 396-103. https://doi.org/10.1016/j.applthermaleng.2009.07.003

Hung Y. H., Teng T. P., Lin B. G. (2013). Evaluation of the thermal performance of a heat pipe using alumina nanofluids. Experimental Thermal and Fluid Science, Vol. 44, pp. 504-511. https://doi.org/10.1016/j.expthermflusci.2012.08.012

Hwang K. S., Jang S. P., Choi S. U. (2009). Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime. International Journal of Heat and Mass Transfer, Vol. 52, No. 1, pp. 193-199. https://doi.org/10.1016/j.ijheatmasstransfer.2008.06.032

Kalteh M., Abbassi A., Saffar-Avval M., Harting J. (2011). Eulerian-Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel. International Journal of Heat and Fluid Flow, Vol. 32, pp. 107-116. https://doi.org/10.1016/j.ijheatfluidflow.2010.08.001

Kandlikar S., Garimella S., Li D., Colin S., King M. R. (2005). Heat transfer and fluid flow in minichannels and microchannels. Elsevier. https://doi.org/10.1016/B978-0-08-044527-4.X5000-2

Kang S. W., Wei W. C., Tsai S. H., Yang S. Y. (2006). Experimental investigation of silver nano-fluid on heat pipe thermal performance. Applied Thermal Engineering, Vol. 26, pp. 2377-2382. https://doi.org/10.1016/j.applthermaleng.2006.02.020

Keyes R. W. (1984). Heat transfer in forced convection through fins. IEEE Transactions on Electron Devices, Vol. 31, pp. 1218-1221. https://doi.org/10.1109/T-ED.1984.21691

Kim D., Kwon Y., Cho Y., Li C., Cheong S., Hwang Y., Lee J., Hong D., Moon S. (2009). Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Current Applied Physics, Vol. 9, No. 2, pp. 119-123. https://doi.org/10.1016/j.capp.2008.12.047

Kishimito T., Ohsaki T. (1986). VLSI packaging technique using liquid-cooled channels. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 9, pp. 328-335. https://doi.org/10.1109/TCHMT.1986.1136661

Knight R. W., Goodling J. S., Hall D. J. (1991). Optimal thermal design of forced convection heat sinks-analytical. Journal of Electronic Packaging, Vol. 113, pp. 313-321. https://doi.org/10.1115/1.2905412

Knight R. W., Hall D. J., Goodling J. S., Jaeger R. C. (1992). Heat sink optimization with application to microchannels. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 15, pp. 832-842. https://doi.org/10.1109/33.180049

Kole M., Dey T. K. (2013). Thermal performance of screen mesh wicks heat pipes using water-based copper nanofluids. Applied Thermal Engineering, Vol. 50, pp. 763-770. https://doi.org/10.1016/j.applthermaleng.2012.06.049

Kumaresan V., Mohaideen A. K. S., Karthikeyan S., Velraj R. (2013). Convective heat transfer characteristics of CNT nanofluids in a tubular heat exchanger of various lengths for energy efficient cooling/heating system. International Journal of Heat and Mass Transfer, Vol. 60, pp. 413-421. https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.021

Lai W., Vinod S., Phelan P., Prasher R. (2009). Convective heat transfer for water-based alumina nanofluids in a single 1.02-mm tube. Journal of Heat Transfer, Vol. 131, No. 11, pp. 112401. https://doi.org/10.1115/1.3133886

Lee D. Y., Vafai K. (1999). Comparative analysis of jet impingement and micro-channel cooling for high heat flux applications. International Journal of Heat and Mass Transfer, Vol. 42, pp. 1555-1568. https://doi.org/10.1016/S0017-9310(98)00265-8

Lee P. S., Garimella S. V. (2006). Thermally developing flow and heat transfer in rectangular microchannels of different aspect ratios. International Journal of Heat and Mass Transfer, Vol. 49, No. 17-18, pp. 3060-3067. https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.011

Li J., Peterson G. P., Cheng P. P. (2004). Three-dimensional analysis of heat transfer in a micro-heat sink with single phase flow. International Journal of Heat and Mass Transfer, Vol. 47, pp. 4215-4231. https://doi.org/10.1016/j.ijheatmasstransfer.2004.04.018

Li Q., Xuan Y. (2002). Convective heat transfer and flow characteristics of Cu-water nanofluid. Science in China Series E: Technological Science, Vol. 45, No. 4, pp. 408-416. https://doi.org/10.1360/02ye9047

Liao L., Liu Z. H. (2009). Forced convective flow drag and heat transfer characteristics of carbon nanotube suspensions in a horizontal small tube. Heat and Mass Transfer, Vol. 45, No. 8, pp. 1129-1136. https://doi.org/10.1007/s00231-009-0483-z

Liu D., Garimella S. V. (2004). Investigation of liquid flow in microchannels. Journal of Thermophysics and Heat Transfer, Vol. 18, No. 1, pp. 65-72. https://doi.org/10.2514/1.9124

Manay E., Sahin B., Yilmaz M., Gelis K. (2012). Thermal performance analysis of nanofluids in microchannel heat sinks. World Academy of Science Engineering and Technology, Vol. 67, pp. 100-105. https://doi.org/10.5281/zenodo.1059539

Minea A. A. (2013). Effect of microtube length on heat transfer enhancement of a water/Al2O3 nanofluid at high Reynolds numbers. International Journal of Heat and Mass Transfer, Vol. 62, pp. 22-30. https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.057

Mishan Y., Mosyak A., Pogrebnyak E., Hetsroni G. (2007). Effect of developing flow and thermal regime on momentum and heat transfer in the micro-scale heat sink. International Journal of Heat and Mass Transfer, Vol. 50, No. 15-16, pp. 3100-3114. https://doi.org/10.1016/j.ijheatmasstransfer.2006.12.003

Moraveji M. K., Razvarz S. (2012). Experimental investigation of aluminum oxide nanofluid on heat pipe thermal performance. International Communications in Heat and Mass Transfer, Vol. 39, No. 9, pp. 1444-1448. https://doi.org/10.1016/j.icheatmasstransfer.2012.07.024

Motevasel M., Nazar A. R. S., Jamialahmadi M. (2017). Experimental investigation of turbulent flow convection heat transfer of MgO/water nanofluid at low concentrations-Prediction of aggregation effect of nanoparticles. International Journal of Heat and Technology, Vol. 35, No. 4, pp. 755-764. https://doi.org/10.18280/ijht.350409

Mousa M. G. (2011). Effect of nanofluid concentration on the performance of circular heat pipe. AinShams Engineering Journal, Vol. 2, No. 1, pp. 63-69. https://doi.org/10.1016/j.asej.2011.03.003

Nandy P., Septiadi W. N., Rahman H. (2012). Thermal performance of screen meshes wicks heat pipes with nanofluids. Experimental Thermal and Fluid Science, Vol. 40, pp. 10-17. https://doi.org/10.1016/j.expthermflusci.2012.01.007

Nayak D., Hwang L. T., Turlik I., Reisman A. (1987). A high-performance thermal module for computer packaging. Journal of Electronic Materials, Vol. 16, No. 5, pp. 357-364. https://doi.org/10.1007/BF02657911

Qu W., Mudawar I. (2002a). Analysis of three-dimensional heat transfer in Micro-channel heat sink. International Journal of Heat and Mass Transfer, Vol. 45, No. 19, pp. 3973-3985. https://doi.org/10.1016/S0017-9310(02)00101-1

Qu W., Mudawar I. (2002b). Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink. International Journal of Heat and Mass Transfer, Vol. 45, No. 12, pp. 2549-2565. https://doi.org/10.1016/S0017-9310(01)00337-4

Rahman M. M. (2000). Measurements of heat transfer in microchannel heat sinks. International Communications in Heat and Mass Transfer, Vol. 27, No. 4, pp. 495-506. https://doi.org/10.1016/S0735-1933(00)00132-9

Rayatzadeh H. R., SaffarAvval M., Mansourkiaei M., Abbassi A. (2013). Effects of continuous sonication on laminar convective heat transfer inside a tube using water-TiO2 nanofluid. Experimental Thermal and Fluid Science, Vol. 48, pp. 8-14. https://doi.org/10.1016/j.expthermflusci.2013.01.016

Rosa P., Karayiannis T. G., Collins M. W. (2009). Single-phase heat transfer in microchannels: The importance of scaling effects. Applied Thermal Engineering, Vol. 29, No. 17-18, pp. 3447-3468. https://doi.org/10.1016/j.applthermaleng.2009.05.015

Sabbah R., Farid M. M., Al-Hallaj S. (2008). Micro-channel heat sinks with a slurry of water with the micro-encapsulated phase change material 3D-numerical study. International Journal of Applied Thermal Engineering, Vol. 29, pp. 445-454. https://doi.org/10.1016/j.applthermaleng.2008.03.027

Sahin B., Manay E., Akyurek E. F. (2015). An experimental study on heat transfer and pressure drop of CuO-water nanofluid. Journal of Nanomaterials, Vol. 16, No. 1, pp. 336. https://doi.org/10.1155/2015/790839

Saleh R., Putra N., Prakoso S. P., Septiadi W. N. (2013). Experimental investigation of thermal conductivity and heat pipe thermal performance of ZnO nanofluids. International Journal of Thermal Sciences, Vol. 63, pp. 125-132. https://doi.org/10.1016/j.ijthermalsci.2012.07.011

Samalam V. K. (1989). Convective heat transfer in microchannels. Journal of Electronic Materials, Vol. 18, No. 5, pp. 611-617. https://doi.org/10.1007/BF02657475

Sasaki S., Kishimito T. (1986). Optimal structure for a micro-grooved cooling fin for the GH-power LSI devices. Electron Letters, Vol. 22, pp. 1332-1334. https://doi.org/10.1049/el:19860916

Senthilkumar R., Vaidyanathan S., Sivaraman B. (2012). Effect of inclination angle in heat pipe performance using copper nanofluid. Procedia Engineering, Vol. 38, pp. 3715-3721. https://doi.org/10.1016/j.proeng.2012.06.427

Shafahi M., Bianco V., Vafai K., Manca O. (2010). An investigation of the thermal performance of cylindrical heat pipes using nanofluids. International Journal of Heat and Mass Transfer, Vol. 53, pp. 376-383. https://doi.org/10.1016/j.ijheatmasstransfer.2009.09.019

Soleimani S., Sheikholeslami M., Ganji D. D., Gorji-Bandpay M. (2012). Natural convectionheat transfer in a nanofluid filled semi-annulus enclosure. International Communications in Heat and Mass Transfer, Vol. 39, pp. 565-574. https://doi.org/10.1016/j.icheatmasstransfer.2012.01.016

Steinke M. E., Kandlikar S. G. (2006). Single-phase liquid friction factors in microchannels. International Journal of Thermal Science, Vol. 45, No. 11, pp. 1073-1083. https://doi.org/10.1016/j.ijthermalsci.2006.01.016

Tabatabaeikia S., Mohammed H. A., Nik-Ghazali N., Shahizare B. (2014). Heat transfer enhancement by using different types of inserts. Advances in Mechanical Engineering, Vol. 6, pp. 250-354. https://doi.org/10.1155%2F2014%2F250354

Teng T. P., Hsu H. G., Mo H. E., Chen C. C. (2010). The thermal efficiency of the heat pipe with alumina nanofluid. Journal of Alloys and Compounds, Vol. 504, pp. S380-S384. https://doi.org/10.1016/j.jallcom.2010.02.046

Tuckerman D. B., Pease R. F. W. (1981). High-performance heat sinking for VLSI. IEEE Electron Device Letters, Vol. 2, No. 5, pp. 126-129. https://doi.org/10.1109/EDL.1981.25367

Wang J., Zhu J., Zhang X., Chen Y. (2013). Heat transfer and pressure drop of nanofluids containing carbon nanotubes in laminar flows. Experimental Thermal and Fluid Science, Vol. 44, pp. 716-721. https://doi.org/10.1016/j.expthermflusci.2012.09.013

Weisberg A., Bau H. H., Zemel J. N. (1992). Analysis of microchannel for integrated cooling. International Journal of Heat and Mass Transfer, Vol. 35, pp. 2465-2474. https://doi.org/10.1016/0017-9310(92)90089-B

Wen D., Ding Y. (2004). Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. International Journal of Heat and Mass Transfer, Vol. 47, No. 24, pp. 5181-5188. https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.012

Xie H., Wang J., Xi T., Liu Y. (2002). The thermal conductivity of suspensions containing nanosized SiC particles. International Journal of Thermophysics, Vol. 23, No. 2, pp. 571-580. https://doi.org/10.1023/A:1015121805842

Xu J. L., Song Y. X. (2008). Numerical simulations of interrupted and conventional microchannel heat sinks. International Journal in Heat and Mass Transfer, Vol. 51, No. 25-26, pp. 5906-5917. https://doi.org/10.1016/j.ijheatmasstransfer.2008.05.003