A case study on heat source mechanism of high-temperature geothermal field

A case study on heat source mechanism of high-temperature geothermal field

Junjie Ba  Chuntian Su  Yanqing Li 

Key Laboratory of Karst Dynamics, MLR & GZAR, Institute of Karst Geology, CAGS, Guilin, 541004, China

Corresponding Author Email: 
bajunjie@kmust.edu.cn
Page: 
129-147
|
DOI: 
https://doi.org/10.3166/ACSM.42.129-147
Received: 
| |
Accepted: 
| | Citation

OPEN ACCESS

Abstract: 

The heat source mechanism is vital to the activity of high-temperature geothermal field. This paper analyses the intrusion era, scale and temperature of magma chamber and the radiation heat of basal granite in Ruidian geothermal field, a typical constrained heat source dominated by magma chamber in southwestern China. The analysis results show that: an intrusive high-temperature magma chamber was formed in Late Pleistocene in Gudong-Mazhan Belt, southern Yunnan Province; the magma chamber was an approximate ellipsoid with a 19km-long east-west axis, a 25km-long north-south axis, a 15km-height, and a highest temperature of 700°C. The basement of this geothermal field is biotite adamellite rich in radioactive elements (e.g. 238U, 232Th and 40K). The mean decay heat generation rate stands at 6.90µW/m3 and the estimated temperature is 116~120°C at the depth of 2km. In addition, the said magma chamber is the main heat source, whose radiogenic heat contributes to the temperature distribution of Ruidian high-temperature geothermal field. In this way, the author discovered the formation mechanism of Ruidian high temperature geothermal field, laying a solid basis for further research on heat source mechanism of geothermal fields

Keywords: 

geothermal field, heat source, magma chamber, granite radioactivity, ruidian, China

1. Introduction
2. Geological setting
3. Geothermal-controlling of magma chamber
4. Redioation characteristics of the biotite adamellite
5. Heat source conditions of the geothermal field
6. Conclusions
Acknowledgment

This work was supported by the National Natural Science Foundation of China (No. 41502342) and the Geological survey project of China (No. DD20160303)

  References

Bai D. H., Liao Z. J. (1994). Inferring the magma heat source of the Tengchong Hot Sea Thermal Field from the results of MT detection. Chinese Science Bulletin, Vol. 39, No. 4, pp. 344-347

Birch F. (1954).Heat flow radioactivity. Faul H. Nuclear Geology. New York :John Wiley&Son, pp. 154-185

Dini A., Gianelli G., Puxeddu M. (2005). Origin and evolution of pliocene-pleistocene granites from the larderello geothermal field (tuscan magmatic province, Italy). Lithos, Vol. 81, No. 1, pp. 1-31. https://doi.org/10.1016/j.lithos.2004.09.002

Elsaid M., Aboelkhair H., Dardier A. (2014). Investigation of a relation between radiogenic heat production and kinetic surface temperature from multispectral aster-tir data: a case study on elmissikat-eleridiya granites, central eastern desert, Egypt. Arabian Journal of Geosciences,Vol. 7, No. 11, pp. 4615-4628. https://doi.org/ 10.1007/ s12517 -013-1118-8

Guo Q. H. (2012). Hydrogeochemistry of high-temperature geothermal systems in China: A review. Applied Geochemistry, Vol. 7, No. 10, pp. 1887-1898. http://dx.doi.org/10.1016/j.apgeochem.2012.07.006

Guo Q. H., Liu M., Li J. (2014). Acid hot springs discharged from the Rehai hydrothermal system of the Tengchong volcanic area (China): Formed via magmatic fluid absorption or geothermal steam heating? Bulletin of Volcanology, Vol. 76, No. 10, pp. 868. https://doi.org/10.1007/s00445-014 -0868-9

Guo S. Y., Li X. J. (2013). Reservoir stratum characteristics and geothermal resources potential of Rongcheng uplift geothermal field in Baoding, Hebei. Chinese Journal of Geology, Vol. 48, No. 3, pp. 922-931. http://dx.doi.org/10.3969/j.issn.0563-5020.2013.03.026

Hady E. E. A., El-Sayed A. M. A., Ahmed A. A. (1994). Natural radioactivity of basement younger granite rocks from the eastern desert. Radiation Physics & Chemistry, Vol. 44, No. 1, pp. 223-224. https://doi.org/10.1016/0969-806X(94)90136-8

Hurley P. M., Fairbairn H. W. (1953). Radiation damage in Zircon: A possible age method. Geological Society of America Bulletin, Vol. 64, No. 6, pp. 659-673. http://dx.doi.org/10.1130/ 0016-7606(1953)64[659:RDIZAP]2.0.CO;2

Ingvar B. F. (2001). Geothermal energy for the benefit of the people. Renewable and Sustainable Energy Reviews, Vol. 16, No. 3, pp. 299-312. http://dx.doi.org/10.1016/S1364-0321 (01)00002-8

Jiang M., Tan H. D., Peng M. (2016). A further discussion on geophysical characteristics of Mazha. Geology in China, Vol. 43, No. 5, pp. 1688-1696

Jiang M., Tan H. D., Zhang J. W. (2012). Geophysical mode of mazhan-gudong magma chamber in tengchong volcano-tectonic area. Acta Geoscientica Sinica, Vol. 33, No. 5, pp. 731-739. https://doi.org/10.3975/cagsb.2012.05.03

Khair H. A., Cooke D., Hand M. (2015). Seismic mapping and geomechanical analyses of faults within deep hot granites, a workflow for enhanced geothermal system projects. Geothermics, Vol. 53, No. 53, pp. 46-56. https://doi.org/10.1016/j.geothermics.2014.04.00 7

Li H., Peng S. B., Qiao W. T. (2011).The distribution and activity of Cenozoic magma chamber in Tengchong volcano area deduced from the MODIS multi-temporal monthly night LST data. Acta Petrologica Sinica, Vol. 27, No. 10, pp. 2873-2882. https://doi.org/1000-0569/2011/027(10)-2873-82.

Lin M. S., Peng S. B., Qiao W. T. (2014). Petro-geochemistry and geochronology of late Cretaceous-Eocene granites in high geothermal anomaly areas in the Tengchong block,Yunnan Province, China and their tectonic implications. Acta Petrologica Sinica, Vol. 30, No. 2, pp. 527-546. https://doi.org/1000-0569 /2014 /030( 02) -0527-46

Ma L., Deng J., Wang Q. F. (2013). Geochronology of the Dasongpo tin deposit, Yunnan Province: Evidence from zircon LA-ICP-MS U-Pb ages and cassiterite LA-MC-ICP-MS U-Pb age. Acta Petrologica Sinica, Vol. 29, No. 4, pp. 1223-1235. https://doi.org/1000-0569/2013/029(04)-1223-35

Mareschal J. C., Jaupart C. (2004). Variations of surface heat flow and lithospheric thermal structure beneath the north american craton. Earth & Planetary Science Letters, Vol. 223, No. 1, pp. 65-77. https://doi.org/10.1016/j.epsl.2004.04.002

Nier A. O. (1939).The Isotopic Constitution of Radiogenic Leads and the Measurement of Geological Time. II. Phys Rev ,Vol. 55, No. 2, pp. 153-163. https://doi.org/10.1103/PhysRev.55.153

Pang Z. H., Hu S. B., Wang J. Y. (2012). A roadmap to geothermal energy development in China. Science&Technology Review, Vol. 30, No. 32, pp. 18-24. http://dx.doi.org/10.3981/j.issn. 1000-7857. 2012.32.002

Piña-Varas P., Ledo J., Queralt P. (2014). 3-D magnetotelluric exploration of tenerife geothermal system (Canary Islands, Spain). Surveys in Geophysics, Vol. 35, No. 4, pp. 1045-1064. http://dx.doi.org/1045-1064. 10.1007/s10712-014-9280-4

Rybach L. (1976). Radioactive heat production in rocks and its relation to other petrophysical parameters. Pure and Applied Geophysics, Vol. 114, No.2,pp. 309-317. https://doi.org /10.1007/BF00878955

Rybach L. (1976). Radioactive heat production: A physical property determined by the chemistry of rocks. In: Sterns RGJ (ed) The physics and chemistry of minerals and rocks. Wiley, New York. pp. 309-318.

Singh A. K., Vallinayagam G. (2009). Radioactive element distribution and rare-metal mineralization in anorogenic acid volcano-plutonic rocks of the neoproterozoic malani felsic province, western peninsular india. Journal of the Geological Society of India, Vol. 73, No. 6, pp. 837-853. https://doi.org/10.1007/s12594-009-0067-z

Tan H. D., Jiang M., Lin C. H. (2013). Characteristics of electrical structure of Tengchong volcano-tectonic belt in Yunnan Province. Geology in China, Vol. 40, No. 3, pp. 800-806

Tenzer H., Park C. H. (2010). Application of the geomechanical facies approach and comparison of exploration and evaluation methods used at Soultz-sous-Forts (France) and Spa Urach (Germany) geothermal sites. Environmental Earth Sciences, Vol. 61, No. 4, pp. 853-880. http://dx.doi.org/10.1007/s12665-009-0403-z

Tucker R. T., Zou H., Fan Q. (2013). Ion microprobe dating of zircons from active dayingshan volcano, tengchong, se tibetan plateau: time scales and nature of magma chamber storage. Lithos, Vol. 173, No. 4, pp. 214-221. https://doi.org/10.1016/j.lithos.2013.04.017

Wang C. Y., Lou H., Wu J. P. (2002).Seismological study on the crustal structure of tengchong volcano-geothermal area. Acta Seismologica Sinica, Vol. 24, No. 3,pp. 231-242.

Wang C. Y., Huangfu G. (2004). Crustal structure in tengchong volcano-geothermal area, western Yunnan, China. Tectonophysics, Vol. 380, No. 1, pp. 69-87. https://doi.org/10.1016/ j.tecto.2003.12.001

Wang G. L., Zhang F. W., Liu Z. M. (2000). An analysis of present situation and prospects of geothermal energy development and utilization in the world. Acta Geoscientia Sinica, Vol. 21, No. 2, pp. 134-139. http://dx.doi.org/10.3321/j.issn: 1006-3021.2000.02.004

Wang J. Y., Hu S. B., Cheng B. H. (2001). Predication of the deep temperature in the target area of the china continental scientific drilling. Chinese Journal of Geophysics, Vol. 44, No. 6, pp. 774-782

Wang Y., Zhang X., Jiang C. (2007). Tectonic controls on the late Miocene-Holocene volcanic eruptions of the Tengchong volcanic field along the southeastern margin of the Tibetan plateau. Journal of Asian Earth Sciences, Vol. 30, No. 2, pp. 375-389. https://doi.org/10.1016/ j.jseaes.2006.11.005

Wang X. B., Xu S., Chen J. F. (1993). Characteristics of hot gas components and strontium isotopes in the Tengchong volcanic area. Chinese Science Bulletin, Vol. 38, No. 9, pp. 814-817.

Wilson C. K., Jones C. H., Gilbert H. J. (2003). Single-chamber silicic magma system inferred from shear wave discontinuities of the crust and uppermost mantle, Coso geothermal area, California. Journal of Geophysical Research Atmospheres, Vol. 108, No. 5, pp. 937-951. https://doi.org/10.1029/2002JB001798

Wu Y., Jin Z. M., Ou X. G. (2005). Lithospheric thermal structure beneath the area of the Chinese Continental Scientific Drilling Site (CCSD). Acta Petrologica Sinica, Vol. 21, No. 2, pp. 439-450. https://doi.org/1000-0569/2005/021(02)-0439-50

Xu Q., Li C. H., Wang J. A. (1997). Geothermal resources in tengchong region, Yunnan province. Geology-geochemistry, Vol. 4, pp. 77-84.

Yang Q. J., Xu Y. G., Huang X. L. (2009). Geochronology and geochemistry of granites in the Tengliang area, western Yunnan: Tectonic implication. Acta Petrologica Sinica, Vol. 25, No. 5, pp. 1092-1104. https://doi.org/1000-0569 /2009 /025(05) -1092-04

Yi G. X., Qi J. Y., Jiang B. L. (2012). Temporal-spatial distribution and tectonic implications of the batholiths in the Gaoligong-Tengliang-Yingjiang area, western Yunnan: Constraints from zircon U-Pb ages and Hf isotopes. Journal of Asian Earth Sciences, Vol. 53, No. 1, pp. 151-175. https://doi.org/10.1016/j.jseaes.2011.06.018

Zeng H. Y., Diao N. R., Fang Z. H. (2010). A finite line-source model for boreholes in geothermal heat exchangers. Heat Transfer-asian Research, Vol. 31, No. 7, pp. 558-567. http://dx.doi.org/10.1002/htj.10057

Zhao C. P., Ran H., Chen K. H. (2011). Present-day temperatures of magma chambers in the crust beneath tengchong volcanic field,southwestern china:estimation from carbon isotopic fractionation between co_2 and ch_4 of free gases escaped from thermal springs. Acta Petrologica Sinica, Vol. 27, No. 1, pp. 2883-2897. https://doi.org/1000-0569/2011/027(10)-2883-97

Zhao C. P., Ran H., Chen K. H. (2006). Present-day magma chambers in Tengchong volcano area inferred from relative geothermal gradient. Acta Petrologica Sinica, Vol. 22, No. 6, pp. 1517-1528. https://doi.org/1000-0569 /2006/022(06)-1517-28

Zhao C. P. (2008). Characteristics of modern mantle derived helium and deep magmatic activity in Tengchong volcanic area. Beijing: Institute of geology, China Earthquake Administration, pp. 78-102.

Zhao C. P., Ran H., Wang Y. (2012). Present-day mantle-derived helium release in the Tengchong volcanic field, Southwest China: Implications for tectonics and magmatism. Acta Petrologica Sinica, Vol. 28, No. 4, pp. 1189-1204. https://doi.org/1000-0569 /2012/028(04)-1189-04

Reinhardt H. G., Gast H. (1995). The importance of radioactivity in geoscience and mining. Cellular & Molecular Life Sciences Cmls, Vol. 51, No. 7, pp. 703-709. https://doi.org/10.1007/BF01941267

Zhao P., Duo J., Xie E. J. (2003). Strontium isotope data for thermal waters in selected high-temperature geothermal fields, China. Acta Petrologica Sinica, Vol. 19, No. 3, pp. 569-576. https://doi.org/1000-0569/2003/019(03)-0569-76

Zhou Z. (1997). Study on deep heat flow in Yunnan, China. Northwestern Seismological Journal, Vol. 4, pp. 51-57.

Zhou Z. H., Xiang C. Y. (1997). Distribution of the lithospheric geotemperature in Yunnan. Seismology and Geology ,Vol. 19, No. 3, pp. 227-234

Zou H., Fan Q., Schmitt A. K. (2010). U-th dating of zircons from holocene potassic andesites (maanshan volcano, tengchon, se tibetan plateau) by depth profiling: time scales and nature of magma storage. Lithos, Vol. 118, No. 1, pp. 202-210. https://doi.org/10.1016/j.lithos.2010.05.001