OPEN ACCESS
A method based on the design rules of nature, which has been used previously for the reduction of notch stresses, is used here for the removal of underloaded parts in a mechanical component. A major advantage is that neither fi nite element analysis nor complex mathematics is necessary for this graphic method of shape optimization, which is demonstrated here using three examples.
biomimetics, cave bear, graphic method, notch stress, shape optimization, tooth
[1] Mattheck, C., Engineering components grow like trees. Materialwissenschaft und Werkstofftechnik, 21, pp. 143–168, 1990.
[2] Baumgartner, A., Harzheim, L. & Mattheck, C., SKO (soft kill option) – the biological way to fi nd optimum structure topology. International Journal of Fatigue, 14, pp. 387–393, 1992.
[3] Mattheck, C., Design in Nature. Learning from Trees. Springer Verlag: Heidelberg and New York, 1998.
[4] Mattheck, C., The Face of Failure in Nature and Engineering, Verlag Forschungszentrum Karlsruhe GmbH, 2004, German version published 2003, www.mattheck.de.
[5] Mattheck, C., Scherrer, M., Tesari, I. & Kraft, O., Kerbformoptimierung ohne FEM: Ein einfacher Weg, um Kerbspannungen abzubauen. Materialwissenschaft und Werkstofftechnik, 34, pp. 514–515, 2003.
[6] Mattheck, C., Sörensen, J. & Sauer, A., Methode der Zugdreiecke – Eine graphische Methode zur Kerbformoptimierung. Konstruktionspraxis, 10, pp. 12–13, 2005.
[7] Mattheck, C., Teacher tree: the evolution of notch shape optimization from complex to simple. Engineering Fracture Mechanics, 73, pp. 1732–1742, 2006.
[8] Mattheck, C. & Bethge, K., Zur Plausibilität der Methode der Zugdreiecke. Materialwissenschaft und Werkstofftechnik, 36(11), pp. 748–749, 2005.
[9] Beitz, W. & Küttner, K.-H., Dubbel: Taschenbuch für den Maschinenbau, 20: Aufl age, Springer-Verlag: Berlin, 2001.