Shape Optimization the Easy Way: The ‘Method of Tensile Triangles’

Shape Optimization the Easy Way: The ‘Method of Tensile Triangles’

C. Mattheck R. Kappel  A. Sauer 

Forschungszentrum Karlsruhe GmbH, Institut für Materialforschung II, Karlsruhe, Germany

Page: 
301-309
|
DOI: 
https://doi.org/10.2495/D&N-V2-N4-301-309
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

A method based on the design rules of nature, which has been used previously for the reduction of notch stresses, is used here for the removal of underloaded parts in a mechanical component. A major advantage is that neither fi nite element analysis nor complex mathematics is necessary for this graphic method of shape optimization, which is demonstrated here using three examples.

Keywords: 

biomimetics, cave bear, graphic method, notch stress, shape optimization, tooth

  References

[1] Mattheck, C., Engineering components grow like trees. Materialwissenschaft und Werkstofftechnik, 21, pp. 143–168, 1990.

[2] Baumgartner, A., Harzheim, L. & Mattheck, C., SKO (soft kill option) – the biological way to fi nd optimum structure topology. International Journal of Fatigue, 14, pp. 387–393, 1992.

[3] Mattheck, C., Design in Nature. Learning from Trees. Springer Verlag: Heidelberg and New York, 1998.

[4] Mattheck, C., The Face of Failure in Nature and Engineering, Verlag Forschungszentrum Karlsruhe GmbH, 2004, German version published 2003, www.mattheck.de.

[5] Mattheck, C., Scherrer, M., Tesari, I. & Kraft, O., Kerbformoptimierung ohne FEM: Ein einfacher Weg, um Kerbspannungen abzubauen. Materialwissenschaft und Werkstofftechnik, 34, pp. 514–515, 2003.

[6] Mattheck, C., Sörensen, J. & Sauer, A., Methode der Zugdreiecke – Eine graphische Methode zur Kerbformoptimierung. Konstruktionspraxis, 10, pp. 12–13, 2005.

[7] Mattheck, C., Teacher tree: the evolution of notch shape optimization from complex to simple. Engineering Fracture Mechanics, 73, pp. 1732–1742, 2006.

[8] Mattheck, C. & Bethge, K., Zur Plausibilität der Methode der Zugdreiecke. Materialwissenschaft und Werkstofftechnik, 36(11), pp. 748–749, 2005.

[9] Beitz, W. & Küttner, K.-H., Dubbel: Taschenbuch für den Maschinenbau, 20: Aufl age, Springer-Verlag: Berlin, 2001.