Techniques for Multifractal Spectrum Estimation in Financial Time Series

Techniques for Multifractal Spectrum Estimation in Financial Time Series

P. Jizba J. Korbel

Department of Physics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Czech Republic

Page: 
261-266
|
DOI: 
https://doi.org/10.2495/DNE-V10-N3-261-266
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

We show that a multifractal analysis offers a new and potentially promising avenue for quantifying the complexity of various time series. In particular, we compare the most common techniques used for multifractal scaling exponents estimation. This is done from both a theoretical and phenomenological point of view. In our discussion we specifically focus on methods based on estimation of Rényi entropy, which provide a powerful tool especially in the presence of heavy-tailed data. As a testbed for the applicability of above multifractal methods we use various real financial datasets, including both daily and high-frequency data.

Keywords: 

multifractal spectrum, Rényi entropy, time series

  References

[1] Bar-Yam, Y., Dynamics of Complex Systems, volume 213. Addison-Wesley Reading, MA, 1997.

[2] Lovejoy, S. & Schertzer, D., The weather and Climate: Emergent Laws and  Multifractal  Cascades. Cambridge University Press, 2013. doi: http://dx.doi.org/10.1017/ CBO9781139093811

[3] Kleinert, H., Path Integrals in Quantum Mechanics, Statistics, Polymer Physics and Financial Markets, 4th edn. World Scientific, 2009.

[4] Mandelbrot, B., Self-affine fractals and fractal dimension. Physica Scripta, 32, pp. 257–260, 1985. doi: http://dx.doi.org/10.1088/0031-8949/32/4/001

[5] Mandelbrot, B., Multifractals and 1/f Noise: Wild Self-Affinity in Physics (1963–1976). Springer, 1999. doi: http://dx.doi.org/10.1007/978-1-4612-2150-0

[6] Stanley, H.E. & Meakin, P., Multifractal phenomena in physics and chemistry. Nature, 335(29), p. 405, 1988.

[7] Harte, D., Multifractals: Theory and Application. Chapmann & Hall/CRC, 2001.

[8] Morales, R., Matteo, T.D., Gramatica, R. & Aste, T., Dynamical generalized hurst exponent as a tool to monitor unstable periods in financial time series. Phys A, 391(11), p. 3180, 

2012. doi: http://dx.doi.org/10.1016/j.physa.2012.01.004

[9] Muzy, J.F., Bacry, E. & Arneodo, A., Multifractal formalism for fractal signals: The structurefunction approach versus the wavelet-transform modulus-maxima method. Phys Rev E, 47(2), p. 875, 1993. doi: http://dx.doi.org/10.1103/PhysRevE.47.875

[10] Peng, C.K., Buldyrev, S., Havlin, S., Simons, M., Stanley, H. & Goldbergerz, A., Mosaic  Organization of DNA Nucleotides. Phys Rev E, 49(2), pp. 1685–1689, 1994. doi: http://dx.doi. org/10.1103/PhysRevE.49.1685

[11] Kantelhardt, W., Zschiegner, S., Koscielny-Bunde, E., Havlin, S., Bunde, A. & Stanley, H.E., Multifractal detrended fluctuation analysis of nonstationary time series. Phys A, 316, p. 87, 2002. doi: http://dx.doi.org/10.1016/S0378-4371(02)01383-3

[12] Scafetta, N. & Grigolini, P., Scaling detection in time series: diffusion entropy analysis. Phys Rev E, 66(3), p. 036130, 2002. doi: http://dx.doi.org/10.1016/j.physa.2012.06.039

[13] Huang, J. et al., Multifractal diffusion entropy analysis on stock volatility in financial markets. Phys A, 391(22), p. 5739, 2012.

[14] Jizba, P. & Korbel, J., Multifractal diffusion entropy analysis: Optimal bin width of  probability histograms. Phys A, 413, pp. 438–458, 2014. doi: http://dx.doi.org/10.1016/j.physa.2014.07.008

[15] Hentschel, H. & Procaccia, I., The infinite number of generalized dimensions of fractals and strange attractors. Phys D, 8(3), pp. 435–444, 1983. doi: http://dx.doi.org/10.1016/01672789(83)90235-X

[16] Rényi, A., Selected papers of Alfréd Rényi sv 2, Akadémiai Kiado,1976.

[17] Jizba, P. & Arimitsu, T., The world according to Rényi: thermodynamics of multifractal systems. Ann Phys, 312(1), p. 17, 2004. doi: http://dx.doi.org/10.1016/j.aop.2004.01.002

[18] Jizba, P. & Arimitsu, T., Observability of rényi’s entropy. Phys Rev E, 2004. doi: http://dx.doi. org/10.1103/PhysRevE.69.026128

[19] Jizba, P., Kleinert, H. & Shefaat, M., Rényi information transfer between financial time series. Phys A, 391(10), p. 2971, 2012. doi: http://dx.doi.org/10.1016/j.physa.2011.12.064

[20] Jizba, P., Dunningham, J.A. & Joo, J., Role of information theoretic uncertainty  relations in quantum theory. Ann Phys, 355, pp. 87–115, 2015. doi: http://dx.doi.org/10.1016/j. aop.2015.01.031

[21] Hurst, H., Black, R. & Simaika, Y., Long-term Storage: an Experimental Study. Constable, London, 1965.

[22] Gilmore, M., Yu, C., Rhodes, T. & Peebles, W., Investigation of rescaled range analysis, the hurst exponent, and long-time correlations in plasma turbulence. Phys Plasmas, 9, 2002.

[23] Koscielny-Bunde, E., Kantelhardt, J., Braun, P., Bunde, A. & Havlin, S., Long-term persistence and multifractality of river runoff records: Detrended fluctuation studies. J Hydrol, 322(1–4), pp. 120–137, 2006. doi: http://dx.doi.org/10.1016/j.jhydrol.2005.03.004

[24] Scott, D.W., Multivariate Density Estimation: Theory, Practice and Visualisation. John Wiley and Sons, Inc., 1992.

[25] Freedman, D. & Diaconis, P., On the histogram as a density estimator. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 57(4), p. 453, 1981.