OPEN ACCESS
Cell culture methodology has been utilized as a powerful tool to characterize cells with a presupposition that the cells in culture faithfully reproduce their in vivo phenotypes. However, it is generally recognized that the cells cultured currently by the most commonly utilized two-dimensional (2D) monolayer technology exhibit different phenotypes from those in living tissues. Cultivation of cells in three-dimensional (3D) lattices of collagen fibrils (collagen gel culture) has been thought to overcome the shortages of 2D cell culture such that the cells behave as in vivo by interacting with not only nearby other cells but also by surrounding extracellular matrices. A remarkable outcome of studies on collagen gel culture was a demonstration of contractile nature of the cells. One of the not-fully appreciated issues about the 3D cell culture is the effect of fluid flow through the collagen gels on cells’ phenotypes. In this review, we make a short overview of historical and current studies of the collagen gel culture from a viewpoint of ‘how we can more correctly extract the cell-related phenomena in living tissues/organs by in vitro culture technology, placing an emphasis on the importance of stimuli caused by flow of cell culture medium.
collagen gel culture, connective tissue modeling, ECM compositions, gel contraction, interstitial fluid flow, tensile strength
[1] Schleiden, M., Beiträge zur Phytogenesis. J. Arch. Anat. Physiol. Wiss. Med., 13, pp. 137–176, 1838.
[2] Schwann, T., Mikroskopische Untersuchungen über die Übereinstimmung in der Struktur und dem Wachstum der Tiere und Pflanzen, Sander’schen Buchhandlung: Berlin, 1839. doi: http:// dx.doi.org/10.1038/086041a0
[3] Harrison, R.G., Observations on the living developing nerve fiber, Anat. Rec., 1(5), pp. 116–128, 1907; Proc. Soc. Exp. Biol. Med., 4(1), pp. 140–143, 1907. doi: http://dx.doi. org/10.1002/ar.1090010503
[4] Di Lullo, G.A., Sweeney, S.M., Korkko, J., Ala-Kokko, L. & San Antonio, J.D., Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J. Biol. Chem., 277(6), pp. 4223–4231, 2002. doi: http://dx.doi. org/10.1074/jbc.m110709200
[5] Ehrmann, R.L. & Gey, G.O., The growth of cells on a transparent gel of reconstituted rat-tail collagen. J. Natl. Cancer Inst., 16(6), pp. 1375–1403, 1956.
[6] Elsdale, T. & Bard, J., Collagen substrata for studies on cell behavior. J. Cell Biol., 54(3), pp. 626–637, 1972. doi: http://dx.doi.org/10.1083/jcb.54.3.626
[7] Eastwood, M., McGrouther, D.A. & Brown, R.A., Fibroblast responses to mechanical forces. Proc. Inst. Mech. Eng. H., 212(2), pp. 85–92, 1998, Review. doi: http://dx.doi. org/10.1243/0954411981533854
[8] Bell, E., Ivarsson, B. & Merrill, C., Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc. Natl. Acad. Sci. USA, 76(3), pp. 1274–1278, 1979. doi: http://dx.doi.org/10.1073/pnas.76.3.1274
[9] Steinberg, B.M., Smith, K., Colozzo, M. & Pollack, R., Establishment and transformation diminish the ability of fibroblasts to contract a native collagen gel. J. Cell Biol., 87(1), pp. 304–308, 1980. doi: http://dx.doi.org/10.1083/jcb.87.1.304
[10] Baker, B.M. & Chen, C.S., Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J. Cell Sci., 125(13), pp. 3015–3024, 2012, Review. doi: http://dx.doi. org/10.1242/jcs.079509
[11] Ahmed, T.A., Dare, E.V. & Hincke, M., Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng. B Rev., 14(2), pp. 199–215, 2008, Review. doi: http://dx.doi.org/10.1089/ ten.teb.2007.0435
[12] Kleinman, H.K. & Martin, G.R., Matrigel: basement membrane matrix with biological activity. Semin. Cancer Biol., 15(5), pp. 378–386, 2005, Review. doi: http://dx.doi.org/10.1016/j. semcancer.2005.05.004
[13] Beacham, D.A., Amatangelo, M.D. & Cukierman, E., Preparation of extracellular matrices produced by cultured and primary fibroblasts. Curr. Protoc. Cell Biol., Chapter 10, unit 10.9, 2007. doi: http://dx.doi.org/10.1002/0471143030.cb1009s33
[14] Kloxin, A.M., Kloxin, C.J., Bowman, C.N. & Anseth, K.S., Mechanical properties of cellularly responsive hydrogels and their experimental determination. Adv. Mater., 22(31), pp. 3484– 3494, 2010 (review). doi: http://dx.doi.org/10.1002/adma.200904179
[15] Kisiday, J., Jin, M., Kurz, B., Hung, H., Semino, C., Zhang, S. & Grodzinsky, A.J., Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc. Natl. Acad. Sci. USA, 99(15), pp. 9996–10001, 2002.
doi: http://dx.doi.org/10.1073/pnas.142309999
[16] Bartley, W., Birt, L.M. & Banks, P., The Biochemistry of the Tissue. John Wiley & Sons: London, p. 227, 1968.
[17] Chvapil, M., Physiology of Connective Tissue, Butterworth: London, p. 62, 66, 70, 1971.
[18] Ryhanen., L. & Uitto., J., Elastic fibers of the connective tissue. Biochemistry and Physiology of the Skin, ed. L.A. Goldsmith, Oxford University Press: New York, pp. 433–447, 1983.
[19] Watson, E.M. & Pearce, R.H., The biochemistry of the skin; a review; with particular reference to the mucopolysaccharides. Br. J. Dermatol. Syph., 59(10), pp. 327–333, 1947. doi: http:// dx.doi.org/10.1111/j.1365-2133.1947.tb10870.x
[20] Miller, C.C., Godeau, G., Lebreton-DeCoster, C., Desmoulière, A., Pellat, B., Dubertret, L. & Coulomb, B., Validation of a morphometric method for evaluating fibroblast numbers in normal and pathologic tissues. Exp. Dermatol., 12(4), pp. 403–411, 2003. doi: http://dx.doi. org/10.1034/j.1600-0625.2003.00023.x
[21] Ng, C.P., & Swartz, M.A., Fibroblast alignment under interstitial fluid flow using a novel 3-D tissue culture model. Am. J. Physiol. Heart Circ. Physiol., 284(5), pp. 1771–1777, 2003.
[22] Polacheck, W.J., Charest, J.L. & Kamm, R.D., Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proc. Natl. Acad. Sci. USA, 108(27), pp. 11115–11120, 2011. doi: http://dx.doi.org/10.1073/pnas.1103581108
[23] Chary, S.R. & Jain, R.K., Direct measurement of interstitial convection and diffusion of albumin in normal and neoplastic tissues by fluorescence photobleaching. Proc. Natl. Acad. Sci. USA, 86(14), pp. 5385–5389, 1989. doi: http://dx.doi.org/10.1073/pnas.86.14.5385
[24] Krieg, M., Arboleda-Estudillo, Y., Puech, P.H., Käfer, J., Graner, F., Müller, D.J. & Heisenberg, C.P., Tensile forces govern germ-layer organization in zebrafish. Nat. Cell Biol., 10(4), pp. 429–436, 2008. doi: http://dx.doi.org/10.1038/ncb1705
[25] Manschot, J.F. & Brakkee, A.J., The measurement and modelling of the mechanical properties of human skin in vivo. I. The measurement. J. Biomech., 19(7), pp. 511–515, 1986. doi: http:// dx.doi.org/10.1016/0021-9290(86)90124-7
[26] Manschot, J.F. & Brakkee, A.J., The measurement and modelling of the mechanical properties of human skin in vivo. II. The model. J. Biomech., 19(7), pp. 517–521, 1986. doi: http://dx.doi.
org/10.1016/0021-9290(86)90125-9
[27] Eyckmans, J., Boudou, T., Yu, X. & Chen C.S., A Hitchhiker’s guide to mechanobiology. Dev. Cell, 21(1), pp. 35–47, 2011. doi: http://dx.doi.org/10.1016/j.devcel.2011.06.015
[28] Dafni, H., Israely, T., Bhujwalla, Z.M., Benjamin, L.E. & Neeman, M., Overexpression of vascular endothelial growth factor 165 drives peritumor interstitial convection and induces lymphatic drain: magnetic resonance imaging, confocal microscopy, and histological tracking of triple-labeled albumin. Cancer Res., 62(22), pp. 6731–6739, 2002.
[29] Harrell, M.I., Iritani, B.M. & Ruddell, A., Tumor-induced sentinel lymph node lymphangiogenesis and increased lymph flow precede melanoma metastasis. Am. J. Pathol., 170(2), pp. 774–786, 2007. doi: http://dx.doi.org/10.2353/ajpath.2007.060761