Dependability analysis of the structural properties of continuous systems using stochastic activity networks

Dependability analysis of the structural properties of continuous systems using stochastic activity networks

Samia Maza Manal Dakil Christophe Simon 

Université de Lorraine, Centre de Recherche en Automatique de Nancy, UMR CNRS 7039, Vandoeuvre-lès-Nancy, F-54506, France CNRS, Centre de Recherche en Automatique de Nancy, UMR 7039, Vandoeuvre-lès-Nancy, F-54506, France

Corresponding Author Email: 
manal.dakil@univ-lorraine.fr; samia.maza@univ-lorraine.fr; christophe.simon@univ-lorraine.fr
Page: 
425-448
|
DOI: 
https://doi.org/10.3166/JESA.49.425-448
Received: 
N/A
| |
Accepted: 
N/A
| | Citation
Abstract: 

This paper deals with an original analysis approach of continuous system to study structural properties and their dependability. For this purpose, we combine structural analysis by the graph theory and the analysis of the dependability of the properties by stochastic activity networks. The assessment of the dependability factors is based on the knowledge of the link between componants, their state and their physical causality. Secondly, it is based on discrete events modeling to establish the link between component states and properties dependability. A study case illustrates the approach. 

Keywords: 

structural analysis, structural properties, graph theory, depenability, stochastic activity network.

1. Introduction
2. Analyse structurelle
3. Analyse fiabiliste par les réseaux d’activités stochastiques
4. Cas d’étude
5. Conclusion
  References

Basile G., Marro G. (1969). On observability of linear time-invariant systems with unknown inputs. Journal of Optimization Theory and Applications, vol. 3, no 6, p. 410-415.

Boukhobza T., Hamelin F., Simon C. (2014). Partial state observability recovering for linear systems by additional sensor implementation. Automatica, vol. 50(3), p. 858-863.

Cassandras C. G., Lafortune S. (2007). Introduction to discrete event systems (2nd éd.; Springer- Verlag, Ed.). New-York, USA.

Dakil M. (2014). Développement d’une méthodologie conjointe d’analyse structurelle et de sûreté de fonctionnement des propriétés d’un système complexe. Thèse de doctorat, Université de Lorraine, Université de Lorraine.

Dion J.-M., Commault C., van der Woude J. (2003). Generic properties and control of linear structured systems: A survey. Automatica, vol. 39, no 7, p. 1125-1144.

Dulmage A. L., Mendelsohn N. S. (1958). Coverings of bipartite graphs. Canadian Journal of Mathematics, vol. 10, p. 517-534.

Hautus M. (1983). Strong detectability and observers. Linear Algebra and its Applications, vol. 50, p. 353-360.

IEC. (1998). Iec61508:Functional safety of Electrical/Electronic/Programmable electronic safety-related systems. (International Electrotechnical Commission, London, UK)

Kalman R. E. (1968). Lectures on controllability and observability. In Proceedings of c.i.m.e. (international mathematical summer center). Bologna, Italy.

Lasnier G. (2011). Sûreté de fonctionnement des équipements et calculs de fiabilité. Lavoisier, Paris..

Maza S. (2012). Dynamic modeling and simulation of fault tolerant systems based on stochastic activity networks. Proc IMechE Part O: Journal of Risk and Reliability, vol. 226, p. 455-463.

Maza S. (2015). Diagnosis modelling for the dependability assessment of fault-tolerant systems based on stochastic activity networks. Quality and Reliability Engineering International., vol. 31, no 6, p. 963-976.

Maza S., Petin J.-F. (2012). Evaluation de la disponibilité d’un système tolérant aux fautes à l’aide des réseaux d’activités stochastiques. Congrés Lambda Mu’12, Tours, France.

Maza S., Simon C., Boukhobza T. (2012). The impact of actuator failures on the structural controllability of linear systems: A graph theoretical approach. I.E.T. Control Theory & Applications, vol. 6, p. 412-419.

Mogavar A., Meyer J. (1984). Performability modeling with stochastic activity network. In proceeding of real-time systems symposium, pp.215-224, Austin TX, USA.

Murota K. (1987). Refined study on structural controllability of descriptor systems by means of matroids. SIAM Journal of Control and Optimization, vol. 25, no 4, p. 967-989.

Prowell.S.J, Poore.J.H. (2004). Computing system reliability using markov chain usage models. The Journal of Systems and Software, p. 219 - 225.

Ruin T. (2013). Contribution à la quantification des programmes de maintenance complexes. Thèse de doctorat non publiée, Université de Lorraine.

Sanders W., Meyer J. (2001). Stochastic activity networks: Formal definitions and concepts. In E. Brinksma, H. Hermanns, J.-P. Katoen (Eds.), Lectures on formal methods and performanceanalysis, vol. 2090, p. 315-343. Springer Berlin Heidelberg.

Staley J., Sutcliffe P. (1974). Reliability block diagram analysis. Microelectronics Reliability, vol. 13(1), p. 33-47.

Villemeur A. (1992). Reliability, availability, maintainability and safety assessment: methods and techniques (Wiley, Ed.). Transleted from French Edition by A. Cartier and M.C. Lartisien.