OPEN ACCESS
During a Raman spectroscopy experiment, measurement can be affected both by the excitation wavelength, the laser power and the exposure time. It is generally accepted that the Raman signal will be doubled if the laser power is doubled. However, we show in this paper that for low values of power if we take into account the value indicated by the output laser diode, it can cause dramatic errors in the quantitative comparison of Raman signal. We evidence this impact particularly on the analysis of two materials and we indicate the precautions to be taken to compare results with high reliability specifically when Raman spectra are recorded under different conditions. A simple calibration method is then proposed.
Raman spectroscopy, reliability, laser power, time, wavelength.
Baptiste A., Bulou A., Bardeau J.F., Nouet J., Gibaud A., Wen K., Hoeppener S., Maoz R., Sagiv J. (2004). Substrate-Induced Modulation of the Raman Scattering Signals from Self-Assembled Organic Nanometric Films », Langmuir, vol. 20, p. 6232-6237.
Barhoumi A., Zhang D., Tam F., Halas N.J. (2008). « Surface-Enhanced Raman Spectroscopy of DNA », J Am Chem Soc., vol. 130, p.5523-5529.
Bocklitz T.W., Dörfer T., Heinke R., Schmitt M., Popp J., (2015) Spectrometer calibration protocol for Raman spectra recorded with different excitation wavelengths », Spectrochim. Acta. A. Mol. Biomol. Spectrosc., vol. 149, p. 544‑549.
El Mendili Y., Bardeau J.F., Randrianantoandro N., Gourbil A, Greneche J.M., Mercier A-M., Grasset F. (2011). New evidences of in situ laser irradiation effects on γ-Fe2O3 nanoparticles: a Raman spectroscopic study » J Raman Spectrosc., vol. 42, p. 239-242.
El Mendili Y., Bardeau J.-F., Randrianantoandro N., Grasset F., Greneche J.-M. (2012). Insights into the mechanism related to the phase Transition from γ-Fe 2 O 3 to α-Fe 2 O 3 nanoparticles induced by thermal treatment and laser irradiation. J. Phys. Chem. C, vol. 116, p. 23785-23792.
Fernandes L., Guney S., Gutierrez-Galvès A., Marco S. (2016). Calibration transfer in temperature modulated gas sensor arrays. Sensors and Actuators B: Chemical, vol. 231, p. 276-284.
Fleischmann M., Hendra P.J., McQuillan A.J. (1974). Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett., vol. 26, p. 163-166.
Geng Z., Yang F., Chen X., Wu N. (2015). Gaussian process based modeling and experimental design for sensor calibration in drifting environments. Sens. Actuators B Chem., vol. 216, p. 321‑331.
Guerrini L., Garcia-Ramos J.V., Domingo C., Sanchez-Cortes S. (2009). Nanosensors Based on Viologen Functionalized Silver Nanoparticles: Few Molecules Surface-Enhanced Raman Spectroscopy Detection of Polycyclic Aromatic Hydrocarbons in Interparticle Hot Spots. Anal. Chem., vol. 81, p. 1418-1425.
Hedegaard C. (2006). Molluscan shell pigments: an in situ resonance Raman study. J. Molluscan Stud, vol. 72, p.157-162.
Hübert T., Tiebe C., Detjens M., Majewski J. (2016). On-site calibration system for trace humidity sensors. Measurement, vol. 91, p. 251‑257.
Idone A., Gulmini M., Henry A-I., Cadadio F., Chang L., Appolonia L., Van Duyne R.P., Shah N.C. (2013). Silver pastes for dye analysis of reference and historical textile fibers using direct, extractionless, non-hydrolysis surface-enhanced Raman spectroscopy. The Analyst, vol. 138, p.5895-5904.
Jeanmaire D.L. et Van Duyne R.P. (1977). « Surface raman spectroelectrochemistry. J. Electroanal. Chem. Interfacial Electrochem., vol. 84, p. 1-20.
Jess P.R.T., Smith D.D.W., Mazilu M., Dholakia K., Riches A.C., Herrington C.S. (2007). Early detection of cervical neoplasia by Raman spectroscopy. Int J Cancer, vol. 121, p. 2723-2728.
Kim B.S., Lee C.C.I, Christensen J.E., Huser T.R., Chan J.W., Tarantal A.F. (2008). Growth, differentiation, and biochemical signatures of rhesus monkey mesenchymal stem cells. Stem Cells Dev., vol. 17, p. 185-198.
Kneipp K., Wang Y, Kneipp H., Perelman L.T., Itzkan I., Dasari R.R., Feld M.S. (1997). « Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Phys. Rev. Lett., vol. 78, p. 1667‑1670.
Li J.F., Huang Y.F., Ding Y., Yang Z.L., Li S.B., Zhou X.S., Fan F.R., Zhang W., Zhoun Z.Y., Wu D.Y., Ren B., Wang Z.L., Tian Z.Q. (2010). Shell-isolated nanoparticleenhanced Raman spectroscopy. Nature, vol. 464, p. 392-395.
Lorincz A., Haddad D., Naik R., Naik V., Fung A., Cao A., Manda P., Pandya A., Auner G., Rabah R., Langerburg S.E., Klein M.D. (2004). Raman spectroscopy for neoplastic tissue differentiation: a pilot study. J Pediatr Surg., vol. 39, p. 953-956.
Nerrin C., Alfaro P., Aznar M., Domeno C. (2013). The challenge of identifying nonintentionally added substances from food packaging materials: A review. Anal. Chim. Acta, vol. 775, p. 14-24.
Nie S. (1997). Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science, vol. 275, p. 1102‑1106.
Raman CV. (1928). A new radiation. Indian J Phys 2, p. 387-398.
Scawlow A.L., Townes C.H. (1958). Infrared and optical masers. Phys. Rev. vol. 112, p. 1940-1949.
Staymates J.L., Grandner J., Gillen G. (2011). Fabrication of adhesive coated swabs for improved swipe-based particle collection efficiency. Anal. Methods 3, p. 2056-2061
Strege M.A. (2009). Total Residue Analysis of Swabs by Ion Mobility. Anal. Chem, vol. 81, p. 4576-4580.
Taleb A., Diamond J., McGarvey J.J., Beattie J.R., Toland C., Hamilton P.W. (2006). Raman Microscopy for the Chemometric Analysis of Tumor Cells. J. Phys. Chem. B, vol. 110, p. 19625-19631.
Vignaud G., Bardeau J.F., Gibaud A., Grohens Y. (2005). Multiple Glass-Transition Temperatures in Thin Supported Films of Isotactic PMMA as Revealed by Enhanced Raman Scattering. Langmuir, vol. 21, p. 8601-8604.
Wei F., Zhang D., Halas N.J., Hartgerink J.D. (2008). Aromatic Amino Acids Providing Characteristic Motifs in the Raman and SERS Spectroscopy of Peptides. J. Phys. Chem. B, vol. 112, p. 9158-9164.