Comparison of ZnO Nanoflakes on Copper and Brass Substrates

Comparison of ZnO Nanoflakes on Copper and Brass Substrates

Hsiang Chen*
Yu-Cheng Chang
Yan-Yu Chen
Wei-Cheng Lo

Applied Materials and Optoelectronic Engineering, National Chi Nan University, Taiwan, ROC

Corresponding Author Email: 
hchen@ncnu.edu.tw
Page: 
205-209
|
DOI: 
https://doi.org/10.14447/jnmes.v21i4.a02
Received: 
Febuary 20, 2018
| |
Accepted: 
June 10, 2018
| | Citation
Abstract: 

In order to study the difference between two different substrates under different plating currents, we have a relatively small current of the ZnO seed layer at 160mA (current density of 40mA / cm 2) and a current of 12mA (current density of 3mA / cm 2), are plated on copper and brass on the substrate. Then, ZnO nanoflakes were grown on copper and brass substrates by electro- hydrothermal deposi-tion methods. We have done a lot of analysis of the test pieces, including field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), photoluminescence (PL), and contact angles to compare the differences between the two.

Keywords: 

ZnO nanoflakes, hydrothermal method, copper substrate, brass substrate,

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
  References

[1] H. Chen, C. B. Chen and Y. C. Chu, Ceramics International, 40, 6191 (2014).

[2] Y. J. Jeong, J. Bae, S. Nam, S. Lim, J. Jang, S. H. Kim and C. E. Park, Organic Electronics, 39, 272 (2016).

[3] Y.-C. Shyu, T. S. Chieh, W. M. Su, C.-C. Lu, C.-Y. Weng, L. Y. Shan, H. C. Hao, J.-J. Lin, C. F. Lin and C.-T. R. Yu, Journal of New Materials for Electrochemical Systems, 19, 229 (2017).

[4] M. Belhaj, C. Dridi, Y. G. Habba, M. Capo-Chichi and Y. Leprince-Wang, Physica B: Condensed Matter, Physica B, 526, 64 (2017).

[5] L. Huang, X. Wang, F. Yin, Y. Zhang, J. Gao, J. Liu, G. Zhou and Z. Bakenov, Int. J. Electrochem. Sci., 11, 8439 (2016).

[6] Z. Bao, X. Xu, G. Zhou and J. Hu, Nanotechnology, 27, 305403 (2016).

[7] S.-C. Huang, K. M. Hsieh, T. W. Chang, Y. C. Chen, C.-T. R. Yu, T.-C. Lu, C. F. Lin, T.-Y. Yu, T.-T. Wang and H. Chen, Ceramics international, 42, 7848 (2016).

[8] Y.-C. Shyu, T. S. Chieh, W. M. Su, C.-C. Lu, C.-Y. Weng, L. Y. Shan, H. C. Hao, J.-J. Lin, C. F. Lin and C.-T. R. Yu, Jour-nal of New Materials for Electrochemical Systems, 19, 229 (2017).

[9] J.-J. Lai, D. Jian, Y.-F. Lin, M.-M. Ku and W.-B. Jian, Physica B: Condensed Matter, (2017).

[10]W. Hu, C. Peng, W. Luo, M. Lv, X. Li, D. Li, Q. Huang and C. Fan, ACS nano, 4, 4317 (2010).

[11]H. Huang, H. Zhu and Y. Hu, International Journal of Mining Science and Technology, 23, 613 (2013).

[12]P. Sharma, S. Singh and D. R. Mishra, Procedia materials sci-ence, 5, 1771 (2014).

[13]H. Jie, Q. Xu, L. Wei and Y. Min, Corrosion Science, 251, 102 (2016).

[14]X. Wang, X. Ma, J. Church, S. Jung, Y. Son, W. H. Lee and H. J. Cho, Materials Letters, 107, 192 (2017).

[15]C. Liu, Y. Qiu, F. Wan.g, L. Li, Q. Liang and Z. Chen, Ceram-ics International, 43, 5329 (2017).

[16]Y. Liu, Y. Bai, J. Jin, L. Tian, Z. Han and L. Ren, Applied Surface Science, 355, 1238 (2015).