OPEN ACCESS
The electrochemical stability and activity of different compositions of titanium and tantalum oxy-nitride nano-catalysts were investigated for the oxygen reduction reaction (ORR). A new sol-gel method was used to produce a nano-powder mixture of Ti and Ta oxynitride from their alkoxides using urea as a nitrogen source. The precursors prepared by the sol-gel method were annealed in a N2 + 3% H2 atmosphere at determined temperatures (500, 700 and 900 °C) inside a silica tube furnace. X-ray diffraction results proved that by using this method a considerable amount of nitrogen was inserted into the catalyst structure at a relatively low temperature. Energy dispersive spectroscopy showed that the prepared catalyst should be oxidized carbonitride of titanium and/or tantalum. Heat treatment had a major effect on the onset potential by changing the crystallinity of the catalyst, so that the onset potential of titanium oxynitride increased from ca. 0.05 V to 0.65 V vs. NHE by increasing the temperature from 500 to 700 °C. Increasing the Ta concentration also led to a higher onset potential but lower ORR current. For instance, the onset potential for the ORR for tantalum oxynitride heat treated at 700 °C was ca. 0.85 V vs. NHE while this value was ca. 0.65 V vs. NHE for titanium oxynitride. However, the ORR current was 100 times smaller in tantalum oxynitride, most likely because of a low electrochemically active surface area. Electrochemical measurements suggested that an appropriate composition of titanium and tantalum was required to have both a good onset potential and ORR current by improving the catalytic activity and increasing the active surface area and electrical conductivity.
titanium and tantalum oxy-nitride, urea-based sol-gel, oxygen reduction reaction (ORR)
The author wishes to acknowledge the help of Jeff Lullo in commenting on an early draft of this article.
[1] Bin Wang, J. Power Sources, 152, 1 (2005).
[2] Drew C. Higgins, Doralice Meza, Zhongwei Chen, The Journal of Physical Chemistry C, 114, 21982 (2010).
[3] Wei Xiong, Feng Du, Yong Liu, Albert Perez, Michael Supp, Terizhandur S. Ramakrishnan, Liming Dai, Li Jiang, J. Am. Chem. Soc., 132, 15839 (2010).
[4] A. Ishihara, Y. Shibata, S. Mitsushima, K. Ota, Journal of The Electrochemical Society, 155, B400 (2008).
[5] Yuyan Shao, Geping Yin, Yunzhi Gao, J. Power Sources, 171, 558 (2007).
[6] Deli Wang, Huolin L. Xin, Yingchao Yu, Hongsen Wang, Eric Rus, David A. Muller, Hector D. Abruña, J. Am. Chem. Soc., 132, 17664 (2010).
[7] Ke Zhang, Qiaoli Yue, Guifen Chen, Yanling Zhai, Lei Wang, Huaisheng Wang, Jinsheng Zhao, Jifeng Liu, Jianbo Jia, Haibo Li, The Journal of Physical Chemistry C, 115, 379 (2010).
[8] Yan Liu, Akimitsu Ishihara, Shigenori Mitsushima, Nobuyuki Kamiya, Ken-ichiro Ota, Journal of The Electrochemical Society, 154, B664 (2007).
[9] F. Fouda-Onana, S. Bah, O. Savadogo, Journal of Electroanalytical Chemistry, 636, 1 (2009).
[10] Akimitsu Ishihara, Motoko Tamura, Koichi Matsuzawa, Shigenori Mitsushima, Ken-ichiro Ota, Electrochimica Acta, 55, 7581 (2010).
[11] Takako Toda, Hiroshi Igarashi, Masahiro Watanabe, Journal of Electroanalytical Chemistry, 460, 258 (1999).
[12] Yongfu Tang, Huamin Zhang, Hexiang Zhong, Ting Xu, Hong Jin, J. Power Sources, In Press, Corrected Proof, (2011).
[13] Hui Yang, Walter Vogel, Claude Lamy, Nicolás Alonso-Vante, The Journal of Physical Chemistry B, 108, 11024 (2004).
[14] Vojislav R. Stamenkovic, Ben Fowler, Bongjin Simon Mun, Guofeng Wang, Philip N. Ross, Christopher A. Lucas, Nenad M. Marković, Science, 315, 493 (2007).
[15] Shuo Chen, Paulo J. Ferreira, Wenchao Sheng, Naoaki Yabuuchi, Lawrence F. Allard, Yang Shao-Horn, J. Am. Chem. Soc., 130, 13818 (2008).
[16] Juan Zhao, Arumugam Manthiram, Journal of The Electrochemical Society, 158, B208 (2011).
[17] V. Stamenković, T.J. Schmidt, P.N. Ross, N.M. Marković, The Journal of Physical Chemistry B, 106, 11970 (2002).
[18] Sanjeev Mukerjee, Supramaniam Srinivasan, Journal of Electroanalytical Chemistry, 357, 201 (1993).
[19] Huimin Wu, David Wexler, Huakun Liu, O. Savadogo, Jungho Ahn, Guoxiu Wang, Mater. Chem. Phys., 124, 841 (2010).
[20] Guoxiu Wang, Huimin Wu, David Wexler, Huakun Liu, Oumarou Savadogo, J. Alloy. Compd., 503, L1 (2010).
[21] G. Selvarani, S. Maheswari, P. Sridhar, S. Pitchumani, A. K. Shukla, Journal of Fuel Cell Science and Technology, 8, 021003 (2011).
[22] Ken-ichiro Ota, Yoshiro Ohgi, Kyung-Don Nam, Koichi Matsuzawa, Shigenori Mitsushima, Akimitsu Ishihara, J. Power Sources, 196, 5256 (2011).
[23] S. Venkataraj, D. Severin, S.H. Mohamed, J. Ngaruiya, O. Kappertz, M. Wuttig, Thin Solid Films, 502, 228 (2006).
[24] Akimitsu Ishihara, Shotaro Doi, Shigenori Mitsushima, Kenichiro Ota, Electrochimica Acta, 53, 5442 (2008).
[25] Shotaro Doi, Akimitsu Ishihara, Shigenori Mitsushima, Nobuyuki Kamiya, Ken-ichiro Ota, Journal of The Electrochemical Society, 154, B362 (2007).
[26] Akimitsu Ishihara, Kunchan Lee, Shotaro Doi, Shigenori Mitsushima, Nobuyuki Kamiya, Michikazu Hara, Kazunari Domen, Kenzo Fukuda, Ken-ichiro Ota, Electrochemical and Solid-State Letters, 8, A201 (2005).
[27] Youta Maekawa, Akimitsu Ishihara, Jin-Hwan Kim, Shigenori Mitsushima, Ken-ichiro Ota, Electrochemical and Solid-State Letters, 11, B109 (2008).
[28] Kyung Don Nam, Akimitsu Ishihara, Koichi Matsuzawa, Shigenori Mitsushima, Ken-ichiro Ota, Electrochemical and Solid-State Letters, 12, B158 (2009).
[29] Kunchan Lee, Akimitsu Ishihara, Shigenori Mitsushima, Nobuyuki Kamiya, Ken-ichiro Ota, Electrochimica Acta, 49, 3479 (2004).
[30] Yan Liu, Akimitsu Ishihara, Shigenori Mitsushima, Nobuyuki Kamiya, Ken-ichiro Ota, Electrochemical and Solid-State Letters, 8, A400 (2005).
[31] Yan Liu, Akimitsu Ishihara, Shigenori Mitsushima, Kenichiro Ota, Electrochimica Acta, 55, 1239 (2010).
[32] Jin-Hwan Kim, Akimitsu Ishihara, Shigenori Mitsushima, Nobuyuki Kamiya, Ken-Ichiro Ota, Electrochimica Acta, 52, 2492 (2007).
[33] Akimitsu Ishihara, Yoshiro Ohgi, Koichi Matsuzawa, Shigenori Mitsushima, Ken-ichiro Ota, Electrochimica Acta, 55, 8005 (2010).
[34] Shuya Kawahara, Shigenori Mitsushima, Kenichiro Ota, and Nobuyuki Kamiya, ECS Transaction, 3, 619 (2006).
[35] Wang-Jae Chun, Akio Ishikawa, Hideki Fujisawa, Tsuyoshi Takata, Junko N. Kondo, Michikazu Hara, Maki Kawai, Yasumichi Matsumoto, Kazunari Domen, The Journal of Physical Chemistry B, 107, 1798 (2003).
[36] A. Ishihara J.-H. Kim, S. Mitsushima, N. Kamiya and K. Ota, Chem. Lett., 36, 514 (2007).
[37] Jin-Hwan Kim, Akimitsu Ishihara, Shigenori Mitsushima, Nobuyuki Kamiya, Ken-ichiro Ota, Electrochemistry, 75, 166 (2007).
[38] Shiro Shimada, Solid State Ionics, 141, 99 (2001).
[39] Shiro Shimada, Mats Johnsson, Sigita Urbonaite, Thermochimica Acta, 419, 143 (2004).
[40] Akimitsu Ishihara, Motoko Tamura, Koichi Matsuzawa, Shigenori Mitsushima, Ken-ichiro Ota, Journal of Fuel Cell Science and Technology, 8, 1005 (2011).
[41] Yohei Shibata, Akimitsu Ishihara, Shigenori Mitsushima, Nobuyuki Kamiya, Ken-ichiro Ota, Electrochemical and Solid-State Letters, 10, B43 (2007).
[42] Akimitsu Ishihara Yoshiro Ohgi, Yohei Shibata, Shigenori Mitsushima and Ken-ichiro Ota, Chemistry Letters, 37, 608 (2008).
[43] Gang Liu, Hua Min Zhang, Mei Ri Wang, He Xiang Zhong, Jian Chen, J. Power Sources, 172, 503 (2007).