ZnO-carbon active nanostructured thin film fabrication by spin coating technique for enzymatic urea biosensing

ZnO-carbon active nanostructured thin film fabrication by spin coating technique for enzymatic urea biosensing

Kobra Ghayedi Karimi Mahmoud Ebrahimi Sayed Ahmad Mozaffari

Mashhad Branch, Islamic Azad University, Mashhad, Iran

Corresponding Author Email: 
karimi277@yahoo.com, ebrachem2007@yahoo.com
Page: 
81-89
|
DOI: 
https://doi.org/10.14447/jnmes.v21i2.486
Received: 
December 04, 2017
| |
Accepted: 
February 02, 2018
| | Citation
Abstract: 

Spin coated zinc oxide (ZnO)-carbon active porous media on the Fluorine-doped Tin Oxide (FTO) coated glass is presented as an engaged nomination for novel application in enzymatic urea biosensor. Some correlations between the processing parameters spinning speed, spinning duration, volume of solution and ZnO:carbon active ratio and respective thin film characteristics were determined, then uniform ZnO-carbon active the uniform film was achieved at the optimum deposition conditions. FE-SEM was employed to investigate the morphology and hardness of ZnO-carbon active thin film. The FE-SEM image illustrates cavities of a thin film as an efficient transducer area for immobilization of urease enzyme (Urs). Stepwise study of FTO/ZnO-carbon active/Urs biosensor manufacturing was performed by voltammetric and impedimetric techniques. The results revealed a good sensitivity for impedimetric urea retrieval between 8.0-110.0 mg dL-1 with detection limit of 5.4 mg dL-1.

Keywords: 

ZnO-carbon active thin film; Urea biosensor; Spin coating; Electrochemical impedance spectroscopy

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
5. Acknowledgments

S.A. Mozaffari acknowledges the support rendered by the Iranian Research Organization for Science and Technology (IROST), and Iran Nanotechnology Initiative Council (INIC) for this research.

  References

[1] H.F. Hussein, Gh.M. Shabeeb and S.Sh. Hashim, J. Mater. Environ. Sci., 4, 423 (2011).

[2] Ph.B. Khoza, M.J. Moloto and L.M. Sikhwivhilu, J. Nanotechnol., 2012, 1 (2012).

[3] S.A. Kamaruddin, M.Z. Sahdan, K.-Y. Chan, M. Rusop and H. Saim, J. Nanosci. Nanotechnol., 10, 6419 (2010).

[4] E. Bacaksiz, M. Parlak, M. Tomakin, A. Ozcelik, M. Karakiz and M. Altunbas, J. Alloys Compd., 466, 447 (2008).

[5] S.A. Kamaruddin, K.Y. Chan, M.Z. Sahdan, M. Rusop and H. Saim, J. Nanosci. Nanotechnol, 10, 5618 (2010).

[6] L. Miao, S. Cai and Z. Xiao, J. Alloys Compd., 490, 422 (2010).

[7] N.J. Ridha, A.A. Umar, F. Alosfur, M.H. Jumali and M.M. Salleh, J. Nanosci. Nanotechnol., 13, 2667 (2013).

[8] H.S. Al-Salman and M.J. Abdullah, Sens. Actuators. B, 181, 259 (2013).

[9] Q. Humayun, M. Kashif and U. Hashim, J. Nano Mat., 2013 , 1 (2013).

[10] A.A. Ansari, A. Kaushik, P.R. Solanki and B.D. Malhotra, Electrochem Commun., 10, 1246 (2008).

[11] Rajesh, V. Bisht, W. Takashima and K. Kaneto, Biomaterials., 26, 3683 (2005).

[12] C.R. Sant Ana Filho, A.L.R.M. Rossete, C.R.O. Tavares, C.V. Prestes and J.A. Bendassolli, Brazilian J. Chemical Eng., 29, 795 (2012).

[13] J. Traynor, R. Mactier and C. Geddes, BMJ., 333, 733 (2006).

[14] M. Singh, N. Verma, A.K. Garg and N. Redhu, Sens. Actuators. B, 134, 345 (2008).

[15] I. Bozgeyik, M. Senel, E. Cevik and M.F. Abasiyanik, Curr. Appl. Phys., 11, 1083 (2011).

[16] B. Lakard, D. Magnin, O. Deschaume, G. Vanlancker, K. Glinel, S. Demoustier Champagne, B. Nysten, A.M. Jonas, P. Bertrand and S. Yunus, Biosens. Bioelectronn., 26, 4139 (2011).

[17] G.P. Nikoleli, D.P. Nikolelis and C. Methenitis, Anal. Chim. Acta, 675, 58 (2010).

[18] O.Y. Saiapina, V.M. Pyeshkova, O.O. Soldatkin, V.G. Melnik, B.A. Kurc, A. Walcarius, S.V. Dzyadevych and N. Jaffrezic-Renault, Mater. Sci. Eng. C, 31, 1490 (2011).

[19] S. Lee and W. Lee, Bull. Korean Chem. Soc., 23, 1169 (2002).

[20] P.C. Pandey and G. Singh, Talanta, 55, 773 (2001).

[21] N. Batra, M. Tomar, P. Jain and V. Gupta, J. Appl. Phys., 114, 124702 (2013).

[22] J.K. Yang, K.S. Ha, H.S. Baek, S.S. Lee and M.L. Seo, Bull. Korean Chem. Soc., 25, 14999 (2004).

[23] A.S.E. Meibodi and S. Haghjoo, Synth. Met., 194, 1 (2014).

[24] A. Tiwari, S. Aryal, S. Pilla and S. Gong, Talanta, 78, 1401 (2009).

[25] R. Rahmanian and S.A. Mozaffari, Sens. Actuators. B, 207, 772 (2015).

[26] S.A. Mozaffari, H. Salar Amoli, S. Simorgh and R. Rahmanian, Electrochim. Acta 184, 475-482 (2015).

[27] S.A. Mozaffari, T. Chang and S.-M. Park, Biosens. Bioelectron, 26, 74 (2010).

[28] S.A. Mozaffari, T. Chang and S.-M. Park, J. Phys. Chem., C, 113, 12434 (2009).

[29] A.G. Pandolfo and A.F. Hollenkamp, J. Power Sources. 157, 11 (2006).

[30] K.-M. Jin and P. Tsai, Mater. Sci. Eng. B, 139, 81 (2007).

[31] J.R. Macdonald, J. Schoonman and A.P. Lehnen, J. Electroanal. Chem., 131, 77 (1982).

[32] S.A. Mozaffari, R. Rahmanian, M. Abedi and H.S. Amoli, Electrochim. Acta, 146, 538 (2014).

[33] N. Verma and M. Singh, Biosens. Bioelectron., 18, 1219 (2003).

[34] J.H. Jin, S.H. Paek, C.W. Lee, N.K. Min and S.I. Hong, J. Korean Phys. Soc., 42, 735 (2003).

[35] A. Pizzariello, M. Stredansky, S. Stredanska and S. Miertus, Talanta, 54, 763 (2001).

[36] Z. Wu, L. Guan, G. Shen and R. Yu, Analyst., 127, 391 (2002).

[37] Y. Zhengpeng, S. Shihui, D. Hongjuan and Z. Chunjing, Biosens. Bioelectron., 22, 3283 (2007).

[38] R. Sahney, S. Anand, B. Puri and A. Srivastava, Anal. Chim. Acta, 578, 156 (2006).

[39] A. Ali, A.A. Ansari, A. Kaushik, P.R. Solanki, A. Barik, M.K. Pandey and B.D. Malhotra, Mater. Lett., 63, 2473 (2009).

[40] M. Tyagi, M. Tomar and V. Gupta, Biosens. Bioelectron., 41, 110 (2013).

[41] D. Marshal, J. Biosens. Bioelectron., 1, 1 (2010).

[42] I. Kucherenko, O. Soldatkin, B.O. Kasap, S. Öztürk, B. Akata, A. Soldatkin and S. Dzyadevych, Electroanalysis., 24, 1380 (2012).

[43] T. Ahuja, I.A. Mir and D. Kumar, Sens. Actuators. B, 134, 140 (2008).

[44] X. Chen, Z. Yang and S. Si, J. Electroanal. Chem., 635, 1 (2009).

[45] R. Ahmad, N. Tripathy and Y. B. Hahn, Sens. Actuators. B, 194, 290 (2014).