The Research Progress of Zinc Bromine Flow Battery

The Research Progress of Zinc Bromine Flow Battery

Hang Lin Tianyao Jiang Qingyang Sun Guangzhen Zhao Junyou Shi

College of Chemical Engineering, Northeast Electric Power University

College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, Jilin, China

Corresponding Author Email: 
bhsjy64@163.com
Page: 
63-70
|
DOI: 
https://doi.org/10.14447/jnmes.v21i2.470
Received: 
October 13, 2017
| |
Accepted: 
January 18, 2018
| | Citation
Abstract: 

Zinc bromine redox flow battery (ZBFB) has been paid attention since it has been considered as an important part of new energy storage technology. This paper introduces the working principle and main components of zinc bromine flow battery, makes analysis on their technical features and the development process of zinc bromine battery was reviewed, and emphasizes on the three main components of zinc bromine battery, and summarizes the materials and applications of electrolyte, membrane and electrode. At the same time, the solution to the technical problems of zinc bromine flow battery is also briefly analyzed. Finally, the future development of zinc bromine battery system is prospected.

Keywords: 

Zinc bromine redox flow battery; electrolyte; membrane; electrode

1. Basic introduction and principle of ZBFB
2. Development Trend and Application Status of ZBFB
3. The Main Components of ZBFB
4. Conclusion and Prospect
  References

[1] Everest, D.A., Book Review: The Coming Oil Crisis. Energy & Environment, 1997(4).

[2] Yang, Z., et al., Chemical Reviews, 111(5), 3577 (2011).

[3] Inage, S.I., Prospects for Large-Scale Energy Storage in Decarbonised Power Grids. International Energy Agency Iea, 2009.

[4] Li, L., et al., Advanced Energy Materials, 1(3), 306 (2011).

[5] Skyllas-Kazacos, M., et al., Journal of the Electrochemical Society, 158(8), 55 (2011).

[6] Rajarathnam, G.P., et al., Journal of the Electrochemical Society, 163(1), A5112 (2016).

[7] Eckroad, S., EPRI-DOE Handbook of Energy Storage for Transmission and Distribution Applications. Polyvinyl Fluoride, 2003: p. 295-316.

[8] Bass, K., et al., Journal of Power Sources, 35(3), 333 (1991).

[9] Rajarathnam, G.P. and A.M. Vassallo, Strategies for Studying and Improving the Zn/Br RFB, Springer Singapore, 2016.

[10] Yang, S.C., Journal of Power Sources, 50(3), 343 (1994).

[11] Chiu, S.L. and J.R. Selman, Journal of Applied Electrochemistry,22(1), 28 (1992).

[12] Schneider, M., et al., Rsc Advances, 6(112) (2016).

[13] Eidler, P., Development of Zinc/Bromine Batteries for Load-Leveling Applications: Phase 1 Final Report. Office of Scientific & Technical Information Technical Reports, 1999.

[14] Aymé-Perrot, D., et al., Journal of Power Sources, 175(1), 644 (2007).

[15] Hoobin, P.M., K.J. Cathro, and J.O. Niere, Journal of Applied Electrochemistry, 19(6), 943 (1989).

[16] Yang, H.S. et al., Journal of Power Sources, 325, 446 (2016).

[17] Liu, Y., et al., Advanced Energy Materials, 7(8), (2016).

[18] Cedzynska, K., Electrochimica Acta, 34(10), 1439 (1989).

[19] Vogel, I. and A. Moebius, Electrochimica Acta, 36(9), 1403 (1991).

[20] Rajarathnam, G.P. and A.M. Vassallo, The Zinc/Bromine Flow Battery, Springer Singapore, 2016.

[21] Lim, H.S., A.M. Lackner, and R.C. Knechtli, Journal of the Electrochemical Society, 124(8), 1154 (1977).

[22] Heintz, A. and C. Illenberger, Journal of Membrane Science, 113(2), 175 (1996).

[23] Choi, H.S., et al., Koreascience, 24(4), 347 (2013).

[24] Will, F.G., Recent advances in zinc/air batteries. in Battery Conference on Applications and Advances, the Thirteenth, 1998.

[25] Will, F.G. Recent advances in zinc-bromine batteries. in Power Sources 7: Research and Development in Non-Mechanical Electrical Power Sources. 1979.

[26] Rajarathnam, G.P. and A.M. Vassallo, The Zinc/Bromine Flow Battery: Materials Challenges and Practical Solutions for Technology Advancement. 2016.

[27] Austing, J.G., et al., Journal of Membrane Science, 510, 259 (2016).

[28] Li, J., et al., Electrochimica Acta, 216, 320 (2016).

[29] Hatayama, H. and H. Sogo, MICROPOROUS POLYOLEFIN FILM AND SEPARATOR FOR STORAGE CELL. 2006, US.

[30] Oyama, N., et al., Journal of Power Sources, 189(1), 315 (2009).

[31] T. Daido and T. Kawaguchi, Electrolytic-solution-supporting polymer film and secondary battery. 2001, US.

[32] Algarni, S.A., et al., Applied Physics Letters, 104(18), 463 (2014).

[33] Balamurugan, S. and A.B. Mandale, Polymer, 42(6), 2501 (2001).

[34] Easton, M.E., et al., Rsc Advances, 5(102), 83674 (2015).

[35] Winardi, S., et al., Effect of bromine complexing agents on the performance of cation exchange membranes in second-generation vanadium bromide battery. 2015. 376-381.

[36] León, C.P.D. and F.C. Walsh, Encyclopedia of Electrochemical Power Sources, 487-496, 2009.

[37] Jr, C.A. and R.A. Assink, Journal of Membrane Science, 38(1), 71 (1988).

[38] Xi, J., et al., Journal of Power Sources, 166(2), 531 (2007).

[39] Teng, X., et al., Journal of Membrane Science, 341(1–2), 149 (2009).

[40] Luo, Q., et al., Journal of Membrane Science, 311(1–2), 98 (2008).

[41] Zeng, J., et al., Electrochemistry Communications, 10(3), 372 (2008).

[42] Putt, R.A., Assessment of technical and economic feasibility of zinc/bromine batteries for utility load leveling. Final Report Gould Inc Rolling Meadows IL, 1979.

[43] Geld, I. and S.H. Davang, Ocean Engineering, 1(6), 611 (1970).

[44] Khan, I.H., Surface Science, 48(2), 537 (1975).

[45] Chakrabarti M.H. et al., Journal of Power Sources, 253(5), 150 (2014).

[46] Kolosov V.N. and A.A. Shevyrev, Physics of Metals & Metallography, 117(1), 22 (2016).

[47] Pantea, D. et al., Applied Surface Science, 217(1), 181 (2003).

[48] Tsien et al., Sheet electrode for electrochemical systems. 1983.

[49] Hu G. et al., Advanced Materials, 29(11), 1603835 (2017).

[50] Roodan V.A., N. Hosseinpour and M. Zaman, Journal of Nanoscience & Nanotechnology, 17(4), 2493 (2017).

[51] Deng, L. et al., Journal of Colloid & Interface Science, 494, 355 (2017).

[52] Lee J., M.S. Park and K.J. Kim, Journal of Power Sources, 341, 212 (2017).

[53] Munaiah Y. et al., Journal of Physical Chemistry C, 118(27), 14711 (2014).

[54] Jang W.I. et al., Macromolecular Research, 24(3), 276 (2016).

[55] Wang C. et al., Nano Energy, 21, 217 (2016).