Molecularly Imprinted Electrochemical Sensor for the Determination of Sulfamethoxazole

Molecularly Imprinted Electrochemical Sensor for the Determination of Sulfamethoxazole

Benzhi Liu Guangqing Liu Bo Xiao Jinlong Yan

Yancheng Institute of Technology

School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, Jiangsu Province, China, Postcode: 211171

School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province, China, Postcode: 224051

Corresponding Author Email: 
benzhiliu@163.com, yjlyt4788@126.com
Page: 
77-80
|
DOI: 
https://doi.org/10.14447/jnmes.v21i2.492
Received: 
December 11, 2017
| |
Accepted: 
February 28, 2018
| | Citation
Abstract: 

A selective and sensitive molecularly imprinted electrochemical sensor was prepared based on the electropolymerization of methylthionine chloride on the multi-walled carbon nanotubes modified glassy carbon electrode. The proposed sensor was applied to the determination of sulfamethoxazole which showed a linear range of 2.4 to 23.6 µM, and a detection limit of 0.81 µM.The determination of sulfamethoxazole in real samples was also studied.

Keywords: 

Molecularly imprinted polymers; Sulfamethoxazole; Carbon nanotubes

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
5. Acknowledgments

This work was sponsored by the University Natural Science Research Project of Jiangsu Province of China (16KJB550007), Postdoctoral Foundation of Jiangsu Province (1701105B), and the National Natural Science Foundation of China(21677119) .

  References

[1] Rossmann J., Schubert S., Gurke R., Oertel R., Kirch W., J. Chromatogr. B, 969, 162 (2014).

[2] Sun H., Qi H., Li H., Food Anal. Methods, 6, 1049 (2013).

[3] Ganjali M.R., Larijani B., Pourbasheer E., Int. J. Electrochem.Sci., 11, 2119 (2016).

[4] Alizadeh T., Ganjali M.R., Akhoundian M., Norouzi P., Microchim. Acta, 183, 1123 (2016).

[5] Sanghavi B.J., Moore J.A., Chávez J.L., Hagen J.A., Kelley-Loughnane N., Chou C.F., Swami N.S., Biotechnol. Bioeng., 78, 44 (2016).

[6] Reddy S.M., Sette G., Phan Q., Electrochim. Acta, 56, 9203 (2011).

[7] Zhong M., Teng Y., Pang S., Yan L., Kan X., Biosens. Bioelectron, 64, 212 (2015).

[8] Benvidi A., Kakoolaki P., Zare H.R., Vafazadeh R., Electrochim. Acta, 56, 2045 (2011).

[9] Kachoosangi R.T., Musameh M.M., Abu-Yousef I., Kanan J.M., Xiao L., Davies S.G., Russell A., Compton R.G., Anal. Chem., 81, 435 (2009).

[10] Zhang H.B., Zhang Z.H., Hu Y.F., Yang X., Yao S.Z., J. Agri. Food Chem., 59, 1063 (2011).

[11] Sharma P.S., Pietrzyk-Le A., Souza F.D., Kutner W., Anal. Bioanal. Chem., 402, 3177 (2012).

[12] Topcu E., Alanyalioglu M., J. Appl. Polym. Sci., 131, 39686 (2014).

[13] Souza C.D., Braga O.C., VieiraI.C., Spinelli A., Sens. Actuators B: Chem., 135, 66 (2008).

[14] Santos Andrade L., Cardozo Rocha-Filho R., Bezerra Cass Q., FatibelloFilho O., Anal. Methods, 2, 402 (2010).

[15] Arvand M., Ansari R., Heydari L., Mater. Sci. Eng.: C, 31, 1819 (2011).

[16] Calaca G.N., Pessoa C.A., Wohnrath K., Nagata N., Int. J. Pharm. Pharm. Sci., 6, 438 (2014).