Influence of one porous layer insert on the transient heat transfer in a tall annulus in presence of large source terms

Influence of one porous layer insert on the transient heat transfer in a tall annulus in presence of large source terms

Fausto Arpino Michela Ciccolella Gino Cortellessa Nicola Massarotti*Alessandro Mauro 

Dipartimento di Ingegneria Civile e Meccanica, Università di Cassino e del Lazio Meridionale, G. Di Biasio 43, 03043 Cassino (FR), Italy

Dipartimento di Ingegneria, Università degli Studi di Napoli “Parthenope”, Centro Direzionale, Isola C4, 80143 Napoli, Italy

Università Telematica Pegaso, Piazza Trieste e Trento n.48, 80132 Napoli, Italy

Corresponding Author Email: 
massarotti@uniparthenope.it
Page: 
S478-S484
|
DOI: 
https://doi.org/10.18280/ijht.35Sp0165
Received: 
| |
Accepted: 
| | Citation

OPEN ACCESS

Abstract: 

This paper provides a sensitivity analysis on the influence of one porous layer insert on the transient behavior of natural convection in a tall annular enclosure in presence of large source terms. The porous medium which partially fills the cavity is characterized by a low value of the Darcy number, typical of insulating materials and metallic foams, often employed in heat exchangers and other engineering applications. A stabilized, fully explicit version of the Compressibility Based Scheme is here employed and validated against experimental data available in the scientific literature for steady and unsteady convection in vertical cylindrical enclosures. Several analyses are presented here by changing both the geometrical features of the cavity and the properties of the porous domain. The results of these analyses demonstrate that not only the thermo-physical properties of the porous medium but also the position and the thickness of the porous layer strongly affect the transient behavior of the convective phenomena occurring in the cavity.

Keywords: 

AC-CBS, partially porous annulus, low darcy number, transient natural convection

1. Introduction
  References

[1] Kaviany M. (1995). Principles of Heat Transfer in Porous Media, Springer, New York.

[2] Nield D.A., Bejan A. (1999). Convection in Porous Media, 2 ed., Springer, New York.

[3] Reda D.C. (1983). Natural convection experiments in a liquid-saturated porous medium bounded by vertical coaxial cylinders, ASME J. Heat Transf., Vol. 105, No. 4, pp. 795-802. DOI: 10.1115/1.3246987

[4] Prasad V., Kulacki F.A., Keyhani M. (1985). Natural convection in porous media, J. Fluid Mech., Vol. 150, pp. 89-119. DOI: 10.1017/s0022112085000040 

[5] Prasad V., Kulacki F.A., Kulkarni A.V. (1986). Free convection in a vertical porous annulus with constant heat flux on the inner wall-experimental results, Int. J. Heat Mass Transf., Vol. 29, No. 5, pp. 713-723. DOI: 10.1016/0017-9310(86)90123-7  

[6] Havstad M.A., Burns P.J. (1982). Convective heat transfer in vertical cylindrical annuli filled with a porous medium, Int. J. Heat Mass Transf., Vol. 25, No. 11, pp. 1755-1766, 1982. DOI: 10.1016/0017-9310(82)90155-7 

[7] Prasad V., Kulacki F.A. (1985). Natural convection in porous media bounded by short concentric vertical cylinders, J. Heat Transf., Vol. 107, No. 1, pp. 147-154. DOI: 10.1115/1.3247371 

[8] Prasad V. (1986). Numerical study of natural convection in a vertical, porous annulus with constant heat flux on the inner wall, Int. J. Heat Mass Transf., Vol. 29, No. 6, pp. 841-853. DOI: 10.1016/0017-9310(86)90180-8 

[9] Hickox C.E., Gartling D.K. (1985). A numerical study of natural convection in a vertical annular porous layer, Int. J. Heat Mass Transf., Vol. 28, No. 3, pp. 720-723. DOI: 10.1016/0017-9310(85)90196-6 

[10] Badruddin I.A., Zainal Z.A., Kahn Z.A., Mallick Z. (2007). Effect of viscous dissipation and radiation on natural convection in a porous medium embedded within vertical annulus, Int. J. Therm. Sci., Vol. 46, No. 3, pp. 221-227, 2007. DOI: 10.1016/j.ijthermalsci.2006.05.005 

[11] Badruddin I.A., Zainal Z.A., Aswatha Narayana, P.A., Seetharamu K.N. (2006). Heat transfer by radiation and natural convection through a vertical annulus embedded in porous medium, Int. Commun. Heat Mass Transf., Vol. 33, No. 4, pp. 500-507. DOI: 10.1016/j.icheatmasstransfer.2006.01.008

[12] Badruddin I.A., Zainal Z.A, Narayana P.A.A., Seetharamu K.N. (2006). Thermal non-equilibrium modeling of heat transfer through vertical annulus embedded with porous medium, Int. J. Heat Mass Transf., Vol. 49, No. 25, pp. 4955-4965. DOI: j.ijheatmasstransfer.2006.05.043 

[13] Hasnaoui M., Vasseur P., Bilgen E., Robillard L. (1995). Analytical and numerical study of natural convection heat transfer in a vertical porous annulus, Chem. Eng. Commun., Vol. 131, No. 1, pp. 141-159. DOI: 10.1080/00986449508936288

[14] Prasanna B.M.R., Venkatachalappa M. (2003). Numerical study of natural convection in a vertical cylindrical annulus using a non-Darcy equation, J. Porous Media, Vol. 5, No. 2, pp. 87-102. DOI: 10.1615/JPorMedia.v5.i2.20

[15] Jha B.K. (2005). Free-convection flow through an annular porous medium, Heat Mass Transf., Vol. 41, No. 8, pp. 675-679. DOI: 10.1007/s00231-003-0469-1 

[16] Rong F., Guo Z., Chai Z., Shi B. (2010). Lattice Boltzmann model for axisymmetric thermal flows through porous media, Int. J. Heat Mass Transf., Vol. 53, No. 23, pp. 5519-5527. DOI: 10.1016/j.ijheatmasstransfer.2010.07.005 

[17] Char M.I., Lee G.C. (1998). Maximum density effects on natural convection in a vertical annulus filled with a non-Darcy porous medium, Acta Mech., Vol. 128, No. 3, pp. 217-231. DOI: 10.1007/BF01251892 

[18] Marpu D.R. (1995). Forchheimer and Brinkman extended Darcy flow model on natural convection in a vertical cylindrical porous annulus, Acta Mech., Vol. 109, No. 1-4, pp. 41-48. DOI: 10.1007/BF01176815

[19] Sankar M., Park Y., Lopez J.M., Do Y. (2011). Numerical study of natural convection in a vertical porous annulus with discrete heating, Int. J. Heat Mass Transf., Vol. 54, No. 7, pp. 1493-1505. DOI: j.ijheatmasstransfer.2010.11.043

[20] Jha B.K., Yusuf T.S. (2016). Transient free convective flow in an annular porous medium: A semi-analytical approach, Eng. Sci. Tech. Int. J., Vol. 16, No. 4, pp. 1936-1948. DOI: 10.1016/j.jestch.2016.09.022

[21] Kiwan ¬S., Al-Zahrani M.S. (2008). Effect of using porous inserts on natural convection heat transfer between two concentric vertical cylinders, Numer. Heat Transf. Part A: Appl., Vol. 53, No. 8, pp. 870-889. DOI: 10.1080/10407780701715869

[22] Benzeghiba M., Chikh S., Campo A. (2003). Thermosolutal convection in a partly porous vertical annular cavity, J. Heat Transf.-Trans. ASME, Vol. 125, No. 4, pp. 703-715. DOI: 10.1115/1.1589501

[23] Reddy P.V., Narasimham G.S.V.L. (2008). Natural convection in a vertical annulus driven by a central heat generating rod, Int. J. Heat Mass Transf., Vol. 51, No. 19, pp. 5024-5032. DOI: 10.1016/j.ijheatmasstransfer.2008.02.032

[24] Arpino F., Carotenuto A., Massarotti N., Mauro A. (2013). New solutions for axial flow convection in porous and partly porous cylindrical domains, Int. J. Heat Mass Transf., Vol. 57, No. 1, pp. 155-170. DOI: 10.1016/j.ijheatmasstransfer.2012.10.030

[25] Al-Nimr M.A., Khadrawi F. (2003). Transient free convection fluid flow in domains partially filled with porous media, Transp. Porous Media, Vol. 51, No. 2, pp. 157-172. DOI: 10.1023/A:1021999806585 

[26] Massarotti N., Ciccolella M., Cortellessa G., Mauro A. (2016). New benchmark solutions for transient natural convection in partially porous annuli, Int. J. Numer. Meth. Heat & Fluid Flow, Vol. 26, No. 3-4., pp. 1187-1225. DOI: 10.1108/HFF-11-2015-0464

[27] Whitaker S. (1996). The Forchheimer equation: A theoritical development, Trans. Porous Media, Vol. 25, No. 1, pp. 27-61. DOI: 10.1007/BF00141261

[28] Arpino F., Ciccolella M., Cortellessa G., Massarotti N., Mauro A. (2016). Transient Natural Convection in Partially Porous Annuli, Int. J. Heat Tech., Vol. 34, pp. S512-S516. DOI: 10.18280/ijht.34S2

[29] Arpino F., Massarotti N., Mauro A. (2011). Efficient three-dimensional FEM based algorithm for the solution of convection in partly porous domains, Int. J. Heat Mass Transf., Vol. 54, No. 21, pp. 4495-4506. DOI: 10.1016/j.ijheatmasstransfer.2011.06.030

[30] Arpino F., Cortellessa G., Dell'Isola M., Massarotti N., Mauro A. (2014). High order explicit solutions for the transient natural convection of incompressible fluids in tall cavities, Numer. Heat Transf., Part A: Appl., Vol. 66, No. 8, pp. 839-862. DOI: 10.1080/10407782.2014.892389

[31] Arpino F., Cortellessa G., Mauro A. (2015). Transient thermal analysis of natural convection in porous and partially porous cavities, Numer. Heat Transf., Part A: Appl., Vol. 67, No. 6, pp. 605-631. DOI: 10.1080/10407782.2014.949133