Thermal performance evaluation of an indirect solar dryer

Thermal performance evaluation of an indirect solar dryer

Koua Kamenan BlaiseKoffi Ekoun Paul Magloire Gbaha Prosper 

Laboratoire d’Energies nouvelles et Renouvelables, UMRI 58, Institut National Polytechnique Félix Houphouët Boigny, B.P. 581 Yamoussoukro, Cote d’Ivoire

Laboratoire d’Energie Solaire, UFR SSMT, Université Félix Houphouët Boigny, 22 B.P. 582 Abidjan 22, Cote d’Ivoire

Corresponding Author Email: 
kbkoua@yahoo.com
Page: 
131-151
|
DOI: 
https://doi.org/10.3166/I2M.17.131-151
Received: 
| |
Accepted: 
| | Citation

OPEN ACCESS

Abstract: 

The thermal performance of an indirect forced convection solar dryer was investigated experimentally with cocoa beans as drying products. The dryer mainly consists of a solar collector, a drying chamber and two fans. Two photovoltaic panels and battery storage are also integrated with the dryer to supply the required electrical energy. Experiments were performed for three different meteorological conditions. The results show a temperature for air inside the solar collector rise of 22.1 °C, 15.6 °C and 13.2 °C with respect to the ambient air temperature, for the sunny day, partially covered day and cloudy day, respectively. The average solar flux on the collector was 644 W/m2, 448 W/m2 and 341 W/m2, for the sunny day, partially covered day and cloudy day, respectively. The thermal efficiency of the solar collector varied between 34.89 % and 43.40 % whatever the type of day. The thermal drying efficiency of the indirect solar dryer varied between 14.48 % and 20.17 %. The hourly variation of drying chamber temperature is much higher than the ambient air temperature during the experiments.

Keywords: 

indirect solar dryer, thermal efficiency, temperature, solar radiation

1. Introduction
2. Materials and methods
3. Results and discussion
4. Conclusion
  References

Augustus Leon M., Kumar S., Bhattacharya S.C. (2002). A comprehensive procedure for performance evaluation of food dryers. Renewable and Sustainable Energy Reviews, Vol. 6, pp. 367-393. https://doi.org/10.1016/s1364-0321(02)00005-9

Chabane F., Moummi N., Benramache S. (2013). Experimental analysis on thermal performance of a solar air collector with longitudinal fins in a region of Biskra, Algeria. Journal of Power Technologies, Vol. 93, No.1, pp. 52-58.

Chabane F., Moummi N., Benramache S. (2014). Experimental study of heat transfer and thermal performance with longitudinal fins of solar air heater. Journal of Advanced Research, Vol. 5, pp. 183-192. https://doi.org/10.1016/j.jare.2013.03.001

Darvishi H., Zarein M., Farhudi Z. (2016). Energetic and exergetic performance analysis and modeling of drying kinetics of kiwi slices. Journal of  Food Science and Technology, Vol. 53, No. 5, pp. 2317–2333. https://doi.org/10.1007/s13197-016-2199-7

Dissa A. O., Desmorieux H., Savadogo P. W., Segda B. G., Koulidiati J. (2010). Shrinkage, porosity and density during convective drying of spirulina. Journal of Food Engineering, Vol. 97, pp. 410-418. https://doi.org/10.1016/j.jfoodeng.2009.10.036

Duc I. A., Han J. W., Keum D. H. (2011). Thin layer drying characteristics of rapeseed (Brassica napus L.). Journal of Stored Product Research, Vol.47, pp. 32-38. https://doi.org/10.1016/j.jspr.2010.05.006

Gao W., Lin W., Liu T., Xia C. (2007). Analytical and experimental studies on the thermal performance of cross-corrugated and flat plate solar air heaters. Applied Energy, Vol. 84, No.4, pp. 425-441. https://doi.org/10.1016/j.apenergy.2006.02.005

Goyal R. K., Kingsly A., Ramarathinam M., Ilyas S. M. (2006). Thin layer drying kinetics of raw mango slices. Biosystems Engineering, Vol. 95, pp. 43-49. https://doi.org/10.1016/j.biosystemseng.2006.05.001

Hii C. L., Law C. L., Cloke M. (2009). Modeling using a new thin layer drying model and product quality of cocoa. Journal of Food Engineering, Vol. 90, pp. 191-198. https://doi.org/10.1016/j.jfoodeng.2008.06.022

Janjai S., Srisittipokakun N., Balla B. K. (2008). Experimental and modeling performances of a roof-integrated solar drying system for drying herbs and spices. Energy, Vol. 33, pp. 91-103. https://doi.org/10.1016/j.energy.2007.08.009

Joly P., More-Chevalier F. (1980). Théorie, pratique et économie de séchage des bois. Editions H. Vial.

Kalogirou S. (2009). Solar energy engineering: Processes and systems. 1st ed. Elsevier’s Science and Technology, Oxford, UK.

Karim M. A., Hawlader M. N. A. (2004). Development of solar air collectors for drying applications. Energy Conversion and Management, Vol. 45, pp. 329-344. https://doi.org/10.1016/S0196-8904(03)00158-4

Karim M. A., Hawlader M. N. A. (2008). Performance evaluation of a V-groove solar air collector for drying applications. Applied Thermal Engineering, Vol. 26, pp. 121-130. https://doi.org/10.1016/j.applthermaleng.2005.03.017

Koyuncu T. (2006). Performance of various designs of solar air heaters for crop drying applications. Renewable Energy, Vol. 31, pp. 1073-1088. https://doi.org/10.1016/j.renene.2005.05.017

Kumar R. (2010). Performance of a double pass solar air collector. Solar Energy, Vol. 84, No.11, pp. 1929-1937. https://doi.org/10.1016/j.solener.2010.07.007

Lee D. S., Hung T. C., Lin J. R., Zhao J. (2015). Experimental investigations on solar chimney for optimal heat collector to be utilized in organic Rankine cycle. Applied Energy, Vol. 154, pp. 651-662. https://doi.org/10.1016/j.apenergy.2015.05.079

Liu G. H., Chen J. R., Liu M. H., Wan X. (2012). Shrinkage, porosity and density behavior during convective drying of bio-porous material. Procedia Engineering, Vol. 31, pp. 634-640. https://doi.org/10.1016/j.proeng.2012.01.1078

Lopez-Vidana E. C., Mendez-Lagrinas L. L., Rodriguez-Ramirez J. (2013). Efficiency of a hybrid solar-gas dryer. Solar Energy, Vol. 93, pp. 23-31. https://doi.org/10.1016/j.solener.2013.01.027

Mechlouch R. F., Daoud H. B., Bagane M., Slama R. B., Bouabdellah M. (2006). Amélioration du rendement d’un séchoir solaire indirect. Séminaire Maghrebien sur les sciences et les Technologies de séchage, 17-19 décembre 2006, Tozeur, Tunisie.

Misha S., Mat S., Ruslan M. H., Salleh E., Sopian K. (2015). Performance of a solar assisted solid desiccant dryer for kenaf core fiber drying under low solar radiation. Solar Energy, Vol. 112, pp. 194-204. https://doi.org/10.1016/j.solener.2014.11.029

Mohanraj M., Chandrasekar P. (2009). Performance of a forced convection solar drier integrated with gravel as heat storage for chili drying. Journal of Engineering Science and Technology, Vol. 4, No. 3, pp. 305-314.

Nematollahi O., Alamdari P., Assari M. R. (2014). Experimental investigation of a dual purpose solar heating system. Energy Conversion and Management, Vol. 78, pp. 359-366. https://doi.org/10.1016/j.enconman.2013.10.046

Singh S., Dhiman P. (2016). Thermal performance of double pass packed bed solar air heaters – A comprehension review. Renewable and Sustainable Energy Reviews, Vol.53, pp. 1010-1031. https://doi.org/10.1016/j.rser.2015.09.058

Singh S., Kumar S. (2012). New approach for thermal testing of solar dryer: Development of generalized drying characteristic curve. Solar Energy, Vol. 86, pp. 1981-1991. https://doi.org/10.1016/j.solener.2012.04.001

Skaar C. (1988). Wood-water relations. Springer series in Wood Science. Springer Verlang, p. 278.

Souza G. F. M. V., Miranda R. F., Lobato F. S., Barrozo M. A. S. (2015). Simultaneous heat and mass transfer in a fixed bed dryer. Applied Thermal Engineering, Vol. 90, pp. 38-44. https://doi.org/10.1016/j.applthermaleng.2015.06.088

Tonui J. K., Tripanagnostopoulos Y. (2007). Improved PV/T solar collectors with heat extraction by forced or natural air circulation. Renewable Energy, Vol. 32, No.4, pp. 623-637. https://doi.org/10.1016/j.renene.2006.03.006

Torki-Harchegani M., Ghanbarian D., Pirbalouti A. G., Sadeghi M. (2016). Dehydration behaviour, mathematical modelling, Energy efficiency and essential oil yield of peppermint leaves undergoing microwave and hot air treatments. Renewable and Sustainable Energy Reviews, Vol. 58, pp. 407-418. https://doi.org/10.1016/j.rser.2015.12.078

Verma S. K., Prasad B. N. (2000). Investigation for the optimal thermohydraulic performance of artificially roughened solar air heaters. Renewable Energy, Vol. 20, No.1, pp. 19-36. https://doi.org/10.1016/S0960-1481(99)00081-6