Thermal performance of a co-axial borehole heat exchanger

Thermal performance of a co-axial borehole heat exchanger

Raviranjan Kumar SinghRam Vinoy Sharma 

Department of Mechanical Engineering N.I.T. Jamshedpur, India

Corresponding Author Email: 
ravi.ranjan167@gmail.com
Page: 
455-466
|
DOI: 
https://doi.org/10.3166/I2M.17.455-466
Received: 
| |
Accepted: 
| | Citation

OPEN ACCESS

Abstract: 

This paper present result of thermal performance of a co-axial borehole heat exchanger for time varying inlet air temperature on a hottest and coldest day of the year 2015 at N.I.T Jamshedpur, India. Numerical method based on heat transfer correlation has been developed which validated with CFD simulation results. AICO has better performance because of lowering of outlet temperature during hottest day and increasing of outlet temperature in coldest day. Heat transfer to the soil has higher of 100W and lower short-circuiting through central pipe of around 400W difference in AICO (Annulus in Central Out) as compare to CIAO (Centre In Annulus Out).

Keywords: 

Borehole heat exchanger, thermal performance, CFD, Analytical method, AICO, CIAO

1. Introduction
2. Mathematical formulation
3. Grid generation
4. Boundary condition
5. Results and discussion
6. Conclusion
Nomenclature
  References

Acuna J., Mogensen P., Palm B. (2011). Distributed thermal response test on a multi-pipe co-axial borehole heat exchanger. HVAC and Research, Vol. 17, pp. 1012-1029. https://doi.org/10.1080/10789669.2011.625304

Acuna J., Mogensen P., Palm B. (2013). Distributed thermal response test on pipe in pipe borehole heat exchanger. Applied Energy, Vol. 109, pp. 312-320. https://doi.org/10.1016/j.apenergy.2013.01.024

ANSYS FLUENT 17. (2017). Documentation, ANSYS Inc.

Beier R. A., Acuna J., Mogensen P., Palm B. (2013). Borehole resistive and vertical temperature profile in coaxial borehole heat exchanger. Applied Energy, Vol. 102, pp. 665-675. https://doi.org/10.1016/j.apenergy.2012.08.007

Beier R. A., Acuna J., Mogensen P., Palm B. (2014). Transient heat transfer in a coaxial borehole heat exchanger. Geothermic, Vol. 51, pp. 470-482. https://doi.org/10.1016/j.geothermics.2014.02.006

Belloufi Y., Brima A., Zerouali S., Atmani R., Aissaoui F., Rouag A., Moummi N. (2017). Numerical and experimental investigation on the transient behavior of an earth air heat exchanger in continuous operation mode. International Journal of Heat and Technology, Vol. 35, No. 2, pp. 279-288. https://doi.org/10.18280/ijht.350208

Benamar B., Rachid S., Hakan O. F. (2015). Numerical investigation of novel tube design for the geothermal borehole heat exchanger. Applied Thermal Engineering, Vol. 79, No. 2, pp. 153-162. https://doi.org/10.1016/j.applthermaleng.2015.01.027

Christopher J. W., Haoz L., Saffa B. R. (2011). Comparative performance of U-tube and co-axial loop design for use with ground source heat pump. Applied Thermal Engineering, Vol. 37, pp. 190-195. https://doi.org/10.1016/j.applthermaleng.2011.11.015

Raymond J., Mercier S., Nguyen L. (2015). Designing coaxial ground heat exchanger with a thermally enhance outer pipe. Geothermal Energy, Vol. 3, pp. 7. https://doi.org/10.1186/s40517-015-0027-3

Shah R. K., Sekulic D. P. (2003). Fundamentals of heat exchanger design. John Wiley and Sons. https://doi.org/10.1002/9780470172605.ch10

Sharqawy M. H., Mokheimer E. M., Hassan M. B. (2009). Effect pipe to borehole thermal resistance for vertical ground heat exchanger. Geothermal, Vol. 38, pp. 271-277. https://doi.org/10.1016/j.geothermics.2009.02.001

Soni S. K., Pandey M., Bartaria V. N. (2015). Ground couple heat exchanger: A review and application. Renewable and Sustainable Energy Review, Vol. 47, pp. 85-92. https://doi.org/10.1016/j.rser.2015.03.014

Yang L., Yan H., Lam C. J. (2014). Thermal comfort and building energy consumption implications – A review. Applied Energy, Vol. 115, pp. 164-173. https://doi.org/10.1016/j.apenergy.2013.10.062

Zanchini E., Lazzari S., Priarone A. (2010). Effect of flow direction and thermal short-circuiting on the performance of small coaxial ground heat exchanger. Renewable Energy, Vol. 35, pp. 1255-1265. https://doi.org/10.1016/j.renene.2009.11.043

Zanchini E., Lazzari S., Priarone A. (2010). Improving the thermal performance of coaxial borehole heat exchanger. Energy, Vol. 35, pp. 657-666. https://doi.org/10.1016/j.energy.2009.10.038

Zhao J., Wang H., Li X., Galgaro A. (2008). Exparimental investigation and theoretical model of heat transfer of saturated soil around co-axial ground couple heat exchanger. Applied Thermal Engineering, Vol. 28, pp. 116-125. https://doi.org/10.1016/j.applthermaleng.2007.03.033