Hydrochemical Evaluation at Lambari River, São José dos Campos (SP), Brazil

Hydrochemical Evaluation at Lambari River, São José dos Campos (SP), Brazil

Isabella G. Lee Daniel M. Bonotto

Departamento de Geologia, Instituto de Geociências e Ciências Exatas – UNESP, Rio Claro, Brazil

Page: 
157-171
|
DOI: 
https://doi.org/10.2495/EI-V4-N2-157-171
Received: 
N/A
|
Revised: 
N/A
|
Accepted: 
N/A
|
Available online: 
N/A
| Citation

© 2021 IIETA. This article is published by IIETA and is licensed under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).

OPEN ACCESS

Abstract: 

This paper describes a hydrochemical study held at Lambari river, a tributary of Paraíba do Sul river that is located at São José dos Campos city, São Paulo State, Brazil. Such drainage crosses the installations of the Henrique Lage Oil Refinery (REVAP), allowing identify possible pollutants inputs on the water resources due to the development of the industrial activities taking place there. Two sampling campaigns were realized in the wet seasons of 2019 and 2020 aiming to collect rainwater and surface water samples in 32 monitoring points. physicochemical parameters (temperature, pH, redox potential (Eh), electrical conductivity (EC), turbidity and dissolved oxygen), as well hydrochemical parameters (Na+, K+, Ca2+, Mg2+, alkalinity, Cl-, No3-, SO42-, surfactants, tannin–lignin, benzene, toluene, ethylbenzene and xylene (BTEX) and other organic compounds) and dissolved radon (222Rn) provided a robust dataset for understanding the major processes related to modifications in the water quality. Direct relationship was found between EC and total dissolved solids (TDS) in the waters of Lambari river as often described elsewhere. Sodium and chloride were the two dominant ions that justified the EC–TDS relationship. Additionally, both EC and TDS as well correlated significantly with alkalinity (bicarbonate). The rainwater is impoverished in the dissolved constituents relatively to the surface waters, which acquire them during the rainfall interactions with the soil covers/rock surfaces or anthropogenic inputs into the Lambari river channel. The piper diagram highlighted that the hydrochemical facies of rainwater and surface waters are the same, i.e. sodium bicarbonate. The Gibbs boomerang diagrams suggested dominant influence of the dilution effects by rainwater in the hydrochemical composition of the surface waters of Lambari river. Dissolved oxygen and radon correlated significantly, while the analytical data did not indicate changes in the concentration of BTEX and other organic compounds in the waters of Lambari river due to the industrial activities developed by REVAP.

Keywords: 

Brazil, hydrochemical parameters, Lambari river, oil refinery, Paraiba do Sul basin, rainwater, São José dos Campos city, surface waters

  References

[1] Lee I.G. & Bonotto D.M., Hydrochemical parameters in a portion of Paraíba do Sul river hydrographic basin, São José Dos Campos city, São Paulo State, Brazil. WIT Transactions on Ecology and the Environment, 242, WIT Press, 2020. ISSN 1743-3541.

[2] Brasil. Agência Nacional do Petróleo, Gás Natural e Biocombustíveis. Portaria nº 309, de 27 de dezembro de 2001. Estabelece as especificações para a comercialização de gasolinas automotivas no Brasil. Diário Oficial da União. 28 dez 2001.

[3] World Health Organization. Environmental Health Criteria; 214. Human exposure assessment. International Programme on Chemical Safety. Geneva: WHO, 2000.

[4] Clayton, C.G., Nuclear Geophysics. Pergamon: Oxford, p. 479, 1983.

[5] Flügge, S., Zimens, K.E., Die bestimmung von korngrossen und diffusionkonstanten aus dem emaniervermogen (Die theorie der emanier-methode). Zeitschrift fur Physikalische Chemie (Leipzig) B42, 179-220.1939.

[6] WHO (World Health Organization), Guidelines for Drinking Water Quality, 4th ed., WHO Press: Geneva, 2011.

[7] Bonotto D.M., Radioactivity in Waters: From England to Guarani, 1st ed., Ed. UNESP: São Paulo (in Portuguese), 2004.

[8] Amorim D.D. & Ferreira M.E. Um estudo sobre a qualidade das águas do Rio Paraíba do Sul no Vale do Paraíba do Sul no período de 1978 a 1994. Paper presented at: XIII Brazilian Symposium on Water Resources, 2000, Belo Horizonte, MG. 

[9] Appi C.J., Freitas E.L. & Castro J.C. Faciologia e estratigrafia da Bacia de Taubaté. Technical Report, CENPES/Petrobras, 1986.

[10] Chang H.K., Appi C.J., Riccomini C., Castro J.C., Arai M., Freitas E.L. & Santos Neto F.V. Geologia da Bacia de Taubaté. Paper presented at: Southeastern Geology Symposium, 1989, Rio de Janeiro, RJ, p. 10.

[11] Riccomini C. O rift continental do sudeste do Brasil. [PhD thesis]. São Paulo (SP): University of São Paulo, 1989. 

[12] IPT. INSTITUTO DE PESQUISAS TECNOLÓGICAS DE SÃO PAULO. Mapa geológico – quadrícula de São José dos Campos. São Paulo: IPT, 1978. SF-23-Y-D-II. Escala 1:100.000.Isabella G. Lee & Daniel M. Bonotto, Int. J. Environ. Impacts, Vol. 4, No. 2 (2021) 171

[13] Ross J. & Moroz I. Mapa Geomorfológico do Estado de São Paulo. Journal of Geography Department, pp. 41-58, 2011.

[14] Kottek, M.; Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World map of the Köppen Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), pp. 259-263, 2006.

[15] São José dos Campos Climate. Climate Data Web Site Online. [pt.climate-data.org/america-do-sul/brasil/sao-paulo/sao-jose-dos-campos-6151]. Accessed on: 21 Jan 2020.

[16] HACH. Water Analysis Handbook. 4th ed. Hach Company, Loveland, Colorado, USA, 2000.

[17] Durridge, RAD7 radon detector-user manual. Durridge Co. Inc.: Bedford, MA, USA, 2009.

[18] Durridge, RAD7 RAD H2O radon in water accessory-owner’s manual. Durridge Co. Inc.: Bedford, MA, USA, 2009.

[19] Hem J.D. Study and interpretation of the chemical characteristics of natural water. U.S.G.S. Water Supply Paper, 1473, pp. 1-269, 1959.

[20] Faure, G., 1991. Principles and Applications of Inorganic Geochemistry. MacMillan Publishing Co: New York, 626 p. 

[21] Schoeller, H. Groundwaters. Paris: Masson & Cie (in French), 1962.

[22] Piper, A. A graphic procedure in the geochemical interpretation of water-analyses. Transactions of the American Geophysical Union, 25(6), pp. 914–928, 1944.

[23] Gibbs, R.J. Mechanisms controlling world water chemistry. Science, 170, pp. 1088-1090, 1970.

[24] Kumar, P.J.S. Evolution of groundwater chemistry in and around Vaniyambadi Industrial Area: Differentiating the natural and anthropogenic sources of contamination. Chemie der Erde, 74, pp. 641-651, 2014.

[25] Wasserstein, R.L., & Lazar, N.A. The ASA’s Statement on p-values: context, process, and purpose. The American Statistician, 70(2), pp. 129-133. 2016.

[26] Ministério da Saúde Brasileiro. Portaria Nº 2914 de 12 de dezembro 2011; Procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade. p. 33, 2011.

[27] Brasil Consolidated ordinance No. 5 of the Ministry of Health published in 28/09/2017 – Consolidates the standards on health actions and services of the Unified Health System. Ministry of Health, Brasilia (in Portuguese), 2017.

[28] DFPM (Division for Supporting the Mineral Production). The mining code, the mineral waters code and how applying research in a mineral deposit, 8th ed., DFPM, Rio de Janeiro, 1966.