Cochlear implant: On the number of channels

Cochlear implant: On the number of channels

P.A. CucisC. Berger-Vachon S. Gallego E. Truy 

University Claude-Bernard Lyon1, 43 bd du 11 Novembre, Villeurbanne-Cedex 69622, France

Lyon neuroscience Research Center, (CRNL), INSERM U1028, 95 bd Pinel, Bron-Cedex 69675, France

ENT Department, Edouard-Herriot Hospital, 5 place d’Arsonval 69437 Lyon cedex 03, France

IFSTTAR, 25 Avenue François Mitterrand, 69500 Bron, France

Sensory and Cognitive Neuroscience Laboratory (LNSC), CNRS UMR 7260, Université d’Aix-Marseille, France

Corresponding Author Email:
28 September 2018
| |
31 October 2018
| | Citation



Cochlear implant efficiency is linked to the number of spectral channels. There is a good spectral resolution when many channels are used but, there are also interactions between those channels and it limits speech understanding. Several studies have been conducted on the subject but there is no consensus on the choice of a sound coding strategy. The efficiency of a sound coding strategy depends on the external conditions and on the patient’s physiology. Channel interaction is measurable and it is worthy to study relying on the state of the art. This article considers some papers on the topic and suggests a new approach based on physiology and on simulations. This is the starting point of a new research project.


cochlear implant, channel number, sound coding strategies, channel interaction, simulation, behavioral and physiological measurements

1. Introduction
2. Multielectrode Cochlear Implant and Channel Interaction
3. Psychophysical Tuning Curves
4. On the Number of Channels
5. Cochlear Implant Simulator
6. Future Experiments
7. Conclusion

[1] Berger-Vachon C, Collet L, Djedou B, Morgon A. (1992). Model for understanding the influence of some parameters in cochlear implantation. Ann. Otol. Rhinol. Laryngol 101(1): 42-45.

[2] Friesen LM, Shannon RV, Baskent D, Wang X. (2001). Speech recognition in noise as a function of the number of spectral channels: Comparison of acoustic hearing and cochlear implants. J. Acoust. Soc. Am 110(2): 1150-1163.

[3] Berger-Vachon C, Cucis PA, Truy E, Van HT, Gallego S. (2018). Cochlear implants: Consequences of microphone aging on speech recognition. Complex Systems: Solutions and Challenges in Economics, Management and Engineering, Springer, Cham, pp. 497-519.

[4] Cucis PA, Berger-Vachon C, Truy E, Gallego S. (2017). Implant Cochléaire: Codage et interaction de voisinage entre les électrodes. JCJC’2017: Conference for Young Researchers, Paris, France, pp. 87-96.

[5] Cucis PA, Berger-Vachon C, Truy E, Thai-Van H, Millioz F, Gallego S. (2016). Influence de la stratégie de codage de l’implant cochléaire sur la reconnaissance des syllabes en milieu bruité. in Handicap 2016, Paris, France, pp. 39-44.

[6] Cucis PA, Berger-Vachon C, Millioz F, Truy E, Gallego S. Hearing in noise: Importance of coding strategies. normal hearing subjects and cochlear implant users. Manuscr. Submitt. Publ.

[7] Cucis PA, Berger-Vachon C, Truy E, Thai-Van H, Gallego S. Influence of microphone soiling on syllable recognition in cochlear implants. Simulation and recognition in noise. Acta Otolaryngol. (Stockh.), Accepted for publication.

[8] Djourno A, Eyries C. (1957). Prothese auditive par excitation electrique a distance du nerf sensoriel a laide dun bobinage inclus a demeure. Presse Med 65(63): 1417.

[9] Chouard CH. (2010). Histoire de l’implant cochléaire. Ann. Oto-Laryngol. Chir. Cervico-Faciale 127.

[10] Clark GM. (2006). The multiple-channel cochlear implant: the interface between sound and the central nervous system for hearing, speech, and language in deaf people—a personal perspective. Philos. Trans. R. Soc. B Biol. Sci 361(1469): 791-810.

[11] Churchill TH, Kan A, Goupell MJ, Ihlefeld A, Litovsky RY. (2014). Speech perception in noise with a harmonic complex excited vocoder. J. Assoc. Res. Otolaryngol. JARO 15(2): 265-278.

[12] Wilson BS, Finley CC, Farmer JC, Lawson DT, Weber BA, Wolford RD, Kenan PD, White MW, Merzenich MM, Schindler RA. (1988). Comparative studies of speech processing strategies for cochlear implants. The Laryngoscope 98(10): 1069-1077.

[13] Shannon RV. (1983). Multichannel electrical stimulation of the auditory nerve in man. II. Channel interaction. Hear. Res 12(1): 1-16.

[14] Tang Q, Benítez R, Zeng FG. (2011). Spatial channel interactions in cochlear implants. J. Neural Eng. 8(4): 046029.

[15] Mens LHM. (2007). Advances in cochlear implant telemetry: Evoked neural responses, electrical field imaging, and technical integrity. Trends in Amplif 11(3): 143-159.

[16] Abbas PJ, Hughes ML, Brown CJ, Miller CA, South H. (2004). Channel interaction in cochlear implant users evaluated using the electrically evoked compound action potential. Audiol. Neurotol 9(4): 203-213.

[17] Charasse B. (2003). Etude et optimisation d’un système de télémétrie des réponses neurales (NRTtm) dans la perspective d’un réglage automatisé de l’implant cochléaire. Ph.D. Thesis, Claude Berbard University Lyon 1.

[18] Audition - Oreille - Cochlée. [Online]. Available: [Accessed: 19-Jan-2018].

[19] Guevara N, Hoen M, Truy E, Gallego S. (2016). A cochlear implant performance prognostic test based on electrical field interactions evaluated by eABR (Electrical Auditory Brainstem Responses). PLOS ONE 11(5): e0155008.

[20] Bierer JA. (2007). Threshold and channel interaction in cochlear implant users: evaluation of the tripolar electrode configuration. J. Acoust. Soc. Am 121(3): 1642–1653.

[21] Chatterjee M, Galvin JJ, Fu QJ, Shannon RV. (2006). Effects of stimulation mode, level and location on forward-masked excitation patterns in cochlear implant patients. J. Assoc. Res. Otolaryngol 7(1): 15–25.

[22]  Clark G. (2006). Cochlear Implants: Fundamentals and Applications. Springer Science & Business Media.

[23] Wilson BS, Finley CC, Lawson DT, Wolford RD, Eddington DK, Rabinowitz WM. (1991). Better speech recognition with cochlear implants. Nature 352(6332): 236–238.

[24] Loizou PC. (1998). Mimicking the human ear. IEEE Signal Process. Mag 15(5): 101–130.

[25] De Balthasar C, Boëx C, Cosendai G, Valentini G, Sigrist A, Pelizzone M. (2003). Channel interactions with high-rate biphasic electrical stimulation in cochlear implant subjects. Hear. Res 182(1-2): 77-87.

[26] Traunmüller H. (1990). Analytical expressions for the tonotopic sensory scale. J. Acoust. Soc. Am 88(1): 97-100.

[27] Stelmachowicz PG, Jesteadt W, Gorga MP, Mott J. (1985). Speech perception ability and psychophysical tuning curves in hearing-impaired listeners. J. Acoust. Soc. Am 77(2): 620-627.

[28] Nelson DA. (1991). High-level psychophysical tuning curves: Forward masking in normal-hearing and hearing-impaired listeners. J. Speech Hear. Res 34(6): 1233-1249.

[29] Kluk K, Moore BCJ. (2005). Factors affecting psychophysical tuning curves for hearing-impaired subjects with high-frequency dead regions. Hear. Res 200(1-2): 115-131.

[30] Moore BC. (1978). Psychophysical tuning curves measured in simultaneous and forward masking. J. Acoust. Soc. Am 63(2): 524–532.

[31] Nelson DA, Donaldson GS, Kreft H. (2008). Forward-masked spatial tuning curves in cochlear implant users. J. Acoust. Soc. Am 123(3): 1522-1543.

[32] Langner F, Jürgens T. (2016). Forward-masked frequency selectivity improvements in simulated and actual cochlear implant users using a preprocessing algorithm. Trends Hear 20.

[33] Kirby VM, Nelson DA, Soli SD, Fortune TW. (1987). Channel interactions measured by forward‐masked ‘place’ tuning curves with multichannel electrical stimulation. J. Acoust. Soc. Am 82(S1): S72-S72.

[34] Shannon RV, Fu QJ, Galvin J. (2004). The number of spectral channels required for speech recognition depends on the difficulty of the listening situation. Acta Oto-Laryngol. Suppl (552): 50-54.

[35] Loizou PC, Dorman MF, Tu Z, Fitzke J. (2000). Recognition of sentences in noise by normal-hearing listeners using simulations of speak-type cochlear implant signal processors. Ann. Otol. Rhinol. Laryngol. Suppl 185: 67-68.

[36] Loizou PC. (2006). Speech processing in vocoder-centric cochlear implants. Adv. Otorhinolaryngol 64: 109-143.

[37] Dorman MF, Loizou PC, Fitzke J, Tu Z. (2000). Recognition of monosyllabic words by cochlear implant patients and by normal-hearing subjects listening to words processed through cochlear implant signal processing strategies. Ann. Otol. Rhinol. Laryngol. Suppl 185: 64-66.

[38] Gnansia D, Péan V, Meyer B, Lorenzi C. (2009). Effects of spectral smearing and temporal fine structure degradation on speech masking release. J. Acoust. Soc. Am 125(6): 4023-4033.

[39] Crew JD, Galvin JJ, Fu QJ. (2012). Channel interaction limits melodic pitch perception in simulated cochlear implants. J. Acoust. Soc. Am 132(5): EL429-435.

[40] Verschuur C. (2009). Modeling the effect of channel number and interaction on consonant recognition in a cochlear implant peak-picking strategy. J. Acoust. Soc. Am 125(3): 1723-1736.

[41] Cucis PA, Berger-Vachon C, Truy E, Thai-Van H, Millioz F, Gallego S. (2016). Cochlear implants : Influence of the coding strategy on syllable recognition in noise. AMSE J.-AMSE IFRATH Publ. –2016 Model. C 77(2): 84-97.