Dye-sensitized Solar Cell Utilizing TiO2-sulphur Composite Photoanode: Influence of Sulphur Content

Dye-sensitized Solar Cell Utilizing TiO2-sulphur Composite Photoanode: Influence of Sulphur Content

M.Y.A. Rahman*
S.A.M. Samsuri
A.A. Umar

Corresponding Author Email: 
April 08, 2018
| |
July 28, 2018
| | Citation

TiO2-sulphur composite films have been prepared and employed as photoanode of dye-sensitized solar cell (DSSC). The influence of sulphur content in term of thiourea concentration on the structural and optical properties of the sample has been investigated. The anatase, sulphur and the secondary phase of SO3 and Ti3S4 present in the composite. The 0.3 M sample possesses the highest reflection in visible region. The luminescence peak intensity at 460 nm decreases with thiourea concentration. Raman characterization reveals that the peak at 474 cm−1 corresponds to the A1g symmetric stretching mode of sulphur. The effect of the sulphur precursor concentration on the performance parameters of the device has also been investigated. The DSSC utilizing the sample with 0.3 M thiourea demonstrates the highest power conversion efficiency, η of 1.80% due to the highest dye loading, the lowest bulk and charge transfer resistance and the ongest carrier lifetime. Combining TiO2 with sulphur in composite structure was found as an effective way of enhancing the efficiency of the DSSC.


Dye-sensitized solar cells, photoanode, TiO2-sulphur composite Journal of New

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
5. Acknowledgments

The authors would like to thank Universiti Kebangsaan Malaysia for providing a financial support through a research grant GUP-2016-013.


[1] M.S. Ahmad, A.K. Pandey, N.A. Rahim, A review. Renew. Sustain. Energy Rev., 77, 89 (2017).

[2] C. Xu, J. Wu, U. V. Desai, D. Gao, Nano Lett., 12, 2420 (2012).

[3] J. Qian, P. Liu, Y. Xiao, Y. Jiang, Y. Cao, X. Ai, H. Yang, Adv. Mater. 21, 3663 (2009).

[4] T.C. Li, M.S. Góes, F. Fabregat-Santiago, J. Bisquert, P.R. Bueno, C. Prasittichai, J.T. Hupp, T.J. Marks, J. Phys. Chem. C, 113, 18385 (2009).

[5] D.B. Menzies, R. Cervini, Y.-B. Cheng, G.P. Simon, L. Spic-cia, J. Sol-Gel Sci. Technol., 32, 363 (2004).

[6] N. Rajkumar, S.S. Kanmani, K. Ramachandran, Adv. Sci. Lett., 4, 627 (2011).

[7] C. Wang, I-C. Cheng, J-Z. Chen, ECS J. Solid State Sci. Tech-nol., 4, 3020 (2015).

[8] X. Wang, M. Xi, H. Fong, Z. Zhu, ACS Appl. Mater.Interfaces, 6, 15925 (2014).

[9] C. Gao, X. Li, B. Lu, L. Chen, Y. Wang, F. Teng, J. Wang, Z. Zhang, X. Pan, E. Xie, Nanoscale, 4, 3475 (2012).

[10] S.S. Kanmani, K. Ramachandran, Renewable Energy, 43, 149 (2012).

[11] M.S. Ahmad, A.K. Pandey, N.A. Rahim, Mater. Lett. 195, 62 (2017).

[12] M.S. Ahmad, A.K. Pandey, N.A. Rahim, Optik 157, 134 (2018).

[13] S. Ahmad, A.K. Pandey, N.A. Rahim, Arabian J. Sci. Eng. 2017 (DOI: 10.1007/s13369-017-2979-z).

[14] X.Z. Ma, B. Jin, H.Y. Wang, J.Z. Hou, X.B. Zhong, H.H. Wang, P.M. Xin, J. Electroanal. Chem., 736, 127 (2015).

[15] K. Xie Y. Han, W. Wei, H. Yu, C. Zhang, J-G. Wang, W. Lu, B. Wei, RSC Adv. 5, 77348 (2015).

[16] X. Chen, S.S. Mao, Chem. Reviews, 107, 2891 (2007).

[17] V. Dhas, S. Muduli, S. Agarkar, A. Rana, B. Hannoyer, R. Banerjee, S. Ogale, Solar Energy, 85, 1213 (2011).

[18] Y-H. Chang, C-M. Liu, C. Chen, H-E. Cheng, J. Electrochem. Society, 159, 401 (2012).

[19] A.S. Ganeshraja, K. Rajkumar, K. Zhu, X. Li, S. Thirumurugan, W. Xu, J. Zhang, M. Yang, K. Anbalagan, J. Wang, RSC Adv. 6, 72791 (2016).

[20] S. Majumder, S.K. Jana, K. Bagani, Optical Mater., 40, 97 (2015).

[21] X. Wang, Z. Feng, J. Shi, G. Jia, S. Shen, J. Zhou, C. Li, Phys. Chem. Chem. Phys., 12, 7083 (2012).

[22] J. Shen, H. Wang, Y. Zhou, N. Ye , G. Li, L. Wang, RSC Adv. 2, 9173 (2012).

[23] A.T. Ward, J. Phys. Chem., 72, 4133 (1968).

[24] A. J. Blake, K. Dorney, I.E. Sizemore, H. Huang, J. Nano-mater., 9, (2015) Article ID 212938.