Sulfurization and Antibacterial Properties of ZnS/ZnO Coreshell Structures on Glass Fibers

Sulfurization and Antibacterial Properties of ZnS/ZnO Coreshell Structures on Glass Fibers

Jiun-Jr Wang Cheng Yuan Li Wei-Chih Weng Jo Lun Chiu Yan Yu Chen Chen Haw Su Yu Sheng Tsai Hsiang Chen*

School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, ROC

Applied Materials and Optoelectronic Engineering, National Chi Nan University, Taiwan, ROC

Corresponding Author Email: 
hchen@ncnu.edu.tw
Page: 
221-226
|
DOI: 
https://doi.org/10.14447/jnmes.v21i4.a05
Received: 
January 08, 2018
| |
Accepted: 
December 10, 2018
| | Citation
Abstract: 

In this research, we synthesized ZnO/ZnS shell nanostructures on the surface of glass fiber. With multiple analyses of field emission scanning electron microscope (FESEM), energy dispersive spectrometer (EDS), Photoluminescence (PL) and X-ray diffraction (XRD), we examined the material properties of ZnO/ZnS nanostructures grown at various time. In addition, we assessed the antibacterial property of ZnS/ZnO core-shell structures on glass fibers by OD 600 technique.

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
  References

[1] D. Crisler, J. Cupal and A. Moore, Proceedings of the IEEE, 56, 225 (1968).

[2] Q. Yang, X. Guo, W. Wang, Y. Zhang, S. Xu, D. H. Lien and Z. L. Wang, Acs Nano, 4, 6285 (2010).

[3] S. Dai and H. S. Park, Journal of the Mechanics and Physics of Solids, 61, 385 (2013).

[4] J. Cembrero, A. Elmanouni, B. Hartiti, M. Mollar and B. Marı, Thin Solid Films, 451, 198 (2004).

[5] V. Rogé, C. Guignard, G. Lamblin, F. Laporte, I. Fechete, F. Garin, A. Dinia and D. Lenoble, Catalysis Today, (2017).

[6] E. S. Elmolla and M. Chaudhuri, Journal of hazardous materi-als, 173, 445 (2010).

[7] L. Wang, Y. Zheng, X. Li, W. Dong, W. Tang, B. Chen, C. Li, X. Li, T. Zhang and W. Xu, Thin Solid Films, 519, 5673 (2011).

[8] N. Padmavathy and R. Vijayaraghavan, Science and technology of advanced materials, 9, 035004 (2008).

[9] D. Sharma, J. Rajput, B. Kaith, M. Kaur and S. Sharma, Thin solid films, 519, 1224 (2010).

[10] R. R. Gandhi, S. Gowri, J. Suresh and M. Sundrarajan, Journal of Materials Science & Technology, 29, 533 (2013).

[11] A. Sirelkhatim, S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori, H. Hasan and D. Mohamad, Nano-Micro Letters, 7, 219 (2015).

[12] T.-t. Wong, K.-t. Lau, W.-y. Tam, J. Leng and J. A. Etches, Materials & Design, 56, 254 (2014).

[13] J. F. de Lima, R. F. Martins and O. A. Serra, Optical Materials, 35, 56 (2012).

[14] T. T. X. Hang, N. T. Dung, T. A. Truc, N. T. Duong, B. Van Truoc, P. G. Vu, T. Hoang, D. T. M. Thanh and M.-G. Olivier, Progress in Organic Coatings, 79, 68 (2015).

[15] L. Esteban-Tejeda, B. Cabal, R. Torrecillas, C. Prado, E. Fer-nandez-Garcia, R. López-Piriz, F. Quintero, J. Pou, J. Penide and J. S. Moya, Biomedical Materials, 11, 045014 (2016).

[16] J. Cleveland and A. D. Weidemann, Limnology and Oceanog-raphy, 38, 1321 (1993).

[17] R. John and S. Florence, Chalcogenide letters, 7, (2010).

[18] H. R. Dizaji, A. J. Zavaraki and M. Ehsani, Chalcogenide Let-ters, 8, 231 (2011).

[19] H. Ramli, S. K. A. Rahim, T. A. Rahman and M. M. Aminud-din, Chalcogenide Letters, 10, (2013).

[20]T. Yu, K. Wang, Y. Chen, M. Sheu and H. Chen, Chalcogenide Letters, 14,(2017).