Preparation and Electrochemical Performance of Cobalt Oxides

Preparation and Electrochemical Performance of Cobalt Oxides

Xiyang Yan
Yansu Wang*
Zhiling Ma

College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China

Corresponding Author Email:
January 08, 2018
| |
October 30, 2018
| | Citation

Cobalt oxides are prepared by calcining the precursor at different temperatures. The precursor is precipitated by using Co(NO3)2∙6H2O dissolved in $N H_{3}-N H_{4}^{+}$ buffer solution at pH=9.75. The samples are Co3O4 mixing with honeycomb-like morphology which proved by XRD and SEM analysis. The electrochemical results demonstrate that the best electrochemical performance of Co3O4 is exhibit-ed when the calcination temperature is 450℃. When the current density increases from 1 A∙g-1 to 10 A∙g-1, the specific capacitance de-creases from 453F∙g-1 to 249 F∙g-1. After 1000 cycles charge and discharge at 1A∙g-1, up to 87% of the retention rate can be achieved, and the internal resistance of the material is less than 1Ω.


Cobalt oxides; Calcination temperature; Electrochemical properties; Preparation

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion

[1] Q.Q. Ke, C.H. Tang, Z.C. Yang, M.R. Zheng, L. Mao, H.J. Liu, J. Wang, Electrochimica Acta, 163 (2015).

[2] M. Kumar, A.Subramania, K. Balakrishnan, Electrochimica Acta, 149 (2014).

[3] C.W. Cheng, H.J. Fan, Nano Today, 7, 4 (2012).

[4] J. Kang, A. Hirata, L.J. Kang, X.M. Zhang, Y.Hou, L.Y. Chen, C. Li, T. Fujita, K. Akagi, M.W. Chen, Angew. Chem. Int. Ed., 52, 6 (2013).

[5] S. Kuwabata, S. Masui, H. Tomiyori, H. Yoneyama, Electrochim. Acta, 46, 1 (2000).

[6] Y.H. Xiao, S.J. Liu, F. Li, A.Q. Zhang, J.H. Zhao, S.M. Fang, D.Z. Jia, Adv. Funct. Mater., 22, 19 (2012).

[7] J.B. Mu, B. Chen, Z.C. Guo, M.Y. Zhang, Z.Y. Zhang, P. Zhang, C.L. Shao, Y.C. Liu, Nanoscale, 3, 12 (2011).

[8] D.Q. Liu, X. Wang, X.B. Wang, W. Tian, J.W. Liu, C.Y. Zhi, D.Y. He, Y. Bando, D. Golberg, J. Mater. Chem. A., 1, 6 (2013).

[9] X.J. Zhang, W.H. Shi, J.X. Zhu, W.Y. Zhao, J. Ma, S. Mhaisalkar, T.L. Maria, Y.H. Yang, H. Zhang, H.H. Hng, Q.Y. Yan, Nano Res. 3, 9 (2010).

[10] S.I. Kim, J.S. Lee, H.J. Ahn, H.K. Song, J.H. Jang, ACS Appl. Mater. Interfaces., 5, 5 (2013).

[11] J.H. Kwak, Y.W. Lee, J.H. Bang, Materials Letters, 110 (2013).

[12] K.W. Qiu, H.L.Yan, D.Y..Zhang, Y. Lu , J.B. Cheng, W.Q. Zhao, C.L. Wang, Y.H. Zhang, X.M. Liu, C.W. Cheng, Y.S. Luo, Electrochimica Acta, 141 (2014).

[13] J.C. Zhao, P. Liu, W.W. Zhang , H.J. Tangbo , J.L. Xu, Journal of Shanghai University of Engineering Science, 24, 3(2010).

[14] Y.Q. Fan, G.J. Shao, Z.P. Ma, G.L. Wang, H.B. Shao, S.Yan, Particle Systems Characterization, 31, 10 (2014).

[15] J. Kang, A. Hirata, L.J. Kang, X.M. Zhang, Y. Hou, L.Y. Chen, C. Li, T. Fujita, K. Akagi, M.W. Chen, Angew. Chem. Int. Ed., 52, 6 (2013).

[16] Z.N. Yu, B. Duong, D. Abbitt, J. Thomas, Adv. Mater., 25, 24 (2013).

[17] J. Yan, T. Wei, W.M. Qiao, B. Shao, Q.K. Zhao, L.J. Zhang, Z. J. Fan. Electrochimica Acta., 55, 23 (2010).