Ionic Conduction Characteristics of C8mimX Ionic Liquids and Their Hybrids Towards Application to Charge and Lithium-Ion Storage

Ionic Conduction Characteristics of C8mimX Ionic Liquids and Their Hybrids Towards Application to Charge and Lithium-Ion Storage

Mengxin Liu
Hong Huang*

Department of Mechanical and Materials Engineering, Wright State University, Dayton, Ohio, USA

Corresponding Author Email:
January 09, 2018
| |
February 20, 2018
| | Citation

Room temperature ionic liquids (RTILs) have attracted much attention in electrochemical energy storage systems for their advantageous properties over traditional lithium salt/carbonate solvent electrolytes in terms of negative vapor pressure and non-flammability. RTILs can be used as the solvent-free electrolytes in electrochemical double layer capacitors or act as the important addi-tives to the carbonate electrolytes in lithium-ion batteries and lithium-ion capacitors. Compared with the common 1-ethyl-3-methylimidazolium (C2mim+)-based systems, long-chained RTILs are advantageous for their high electrochemical stability (up to 7V vs Li/Li+) which have the potential to double the operating voltage and energy density. This study is to report ionic conducting characteristics of 1-octyl-3-methylimidazolium (C8mim+) based RTILs, i.e. C8mimX (X = BF4-, PF6-, and Cl-) and their hybrids with diethyl carbonate (DEC) solvent as well as the traditional Li-ion electrolyte like 1M LiPF6-EC/DEC (1:1) at various preset molar ratios. The influences of the hybrid electrolyte composition and temperature on the ionic conduction characteristics were systematically studied.


ionic liquids, conduction, hybrids, molar composition, activation energy, energy storage

1. Introduction
2. Experimental Aspects
3. Results and Discussion
4. Conclusion

[1] M. Armand, F. Endres, D. R. MacFarlane, H. Ohno and B. Scrosati, Nature Materials, 8, 621 (2009).

[2] P. Simon and Y. Gogotsi, Nature Materials, 7, 845 (2008).

[3] M. Mousavi, B. Wilson, S. Kashefolgheta, E. Anderson, S, He, P. Bühlmann, and A. Stein, ACS Appl. Mater. Interfaces, 8, 3396 (2016).

[4] M. Galinski, A. Lewandowski, and I. Stepniak, Electrochimica Acta, 51, 5567 (2006).

[5] H. Nakagawa , Y. Fujino, S. Kozono, Y. Katayama, T. Nukuda, H. Sakaebe, H. Matsumoto, K. Tatsumi, J. Power Sources, 174, 1021 (2007).

[6] A. Lewandowski , A. Swiderska-Mocek, J. Power Sources, 194, 601 (2009).

[7] T. Dato, G. Masuda, and K. Takagi, Electrochimica Acta, 49, 3603 (2004).

[8] K. Abatain, G. Babu, X. Lin, M.-T. Rodrigues, H. Gullapalli, P. Ajayan, M. Grinstaff, and L. Arava, ACS Appl. Mater. Inter-faces, 8, 15242 (2016).

[9] H. Sakaebe, H. Matsumoto, Electrochemistry Communications, 5, 594 (2003).

[10] H. Tokuda, K. Hayamizu, K. Ishii, M. Susan, and M. Watanabe, J. Phys. Chem. B, 109, 6103 (2005).

[11] N. Papaoconomou, O. Zech, P. Bauduin, J. Leveque, W. Kunz, Electrochimica Acta, 70, 124 (2012).

[12] M. Huie, R. Dileo, A. C. Marschilok, K.J. Takeuchi, and E.S. Takeuchi, ACS Appl. Mater. Interfaces, 7, 11724 (2015).

[13] H. Srour, L. Chancelier, E. Bolimowska, T. Gutel, S. Mailley, H. Rouault, and C. C. Santini, J. Appl. Electrochem., 46, 149 (2016).

[14] L.Wu, R. I. Venkatanarayananan, X. Shi, D. Roy, and S. Krish-nan, J. Molecular liquids, 198, 398 (2014).

[15] Y. An, P. Zuo, X. Cheng, L. Liao, and G. Yin, Int. J. Electro-chem. Sci., 6, 2398 (2011).

[16] A. Hofmann, M. Schulz, T. Hanemann, In. J. Electrochem. Sci., 8, 10170 (2013).

[17] T.Wu, L.Hao, C.Kuo, Y.Lin, S.Su, P.Kuo, I.Sun, J. Electro-chem. Sci., 7, 2047 (2012).

[18] H. Niedermeyer, J. P. Hallett, I. Villar-Garcia, P. Hunt, and T. Welton, Chem. Sco. Rev., 41, 7780 (2012).

[19] M.T. Clough, C.R.Crick, J. Grasvik, P.A. Hunt, H. Niedermey-er, T. Welton, and O.P. Whitaker, Chem. Sci., 6, 1101 (2015).

[20] H. Ning, M. Hou, Q. Mei, Y.Liu, D. Yang, and B. Han, Sci-ence China: Chemistry, 55, 1509 (2012).

[21] H. Every, A. Bishop, M. Forsyth, and D. MacFarlane, Electro-chemica Acta, 45(89), 1279 (2000).

[22] H. Wang, J. Wang, S. Zhang, Y. Pei, K. Zhuo, Chem. Phy-Chem., 10, 2516 (2009).

[23] Z. Zhang, X. Gao, and L. Yang, Chinese Science Bulletin, 50, 2005 (2005).

[24] R. Dileo, A. Marschilok, K. Takeuchi, and E. Takeuchi, Elec-trichemica Acta, 109, 27 (2013).

[25] H. Xiang, B. Yin, H. Wang, H. Lin, X. Ge, X. Xie, C. Chen, Electrochimica Acta, 55, 5204 (2010).

[26] I. Voroshylova, S. Smaga, E. Lukinova, V. Chaban, O. Ka-lugin, J. Mol. Liquids, 203, 7 (2015).

[27] A. Zhu, J. Wang, L. Han, M. Fan, Chem Eng. J., 147, 27 (2009).

[28] O. Kalugin, U. Voroshylova, A. Riabchunova, E. Lukinova, V. Chaban, Electrochemica Acta, 105, 188 (2013).

[29] S. Katsuda, K. Imai, Y. Kudo, Y. Takeda, H. Seki, and M. Nakakoshi, J. Chem. Eng. Data, 53, 1528 (2008).

[30] M. Liu, Studies of Ionic Liquid Hybrids: Characteristics and Their Potential Application to Li-ion Batteries and Li-ion Ca-pacitors, Master Thesis, 2017.

[31] S. Kazemiabnavi, Z. Zhang, K. Thornton, and S. Banerjee, J. Phys. Chem. B, 120, 5691 (2016).

[32] S. Zhang, N. Sun, X. He, X. Li, X. Zhang, J. Phys. Chem. Ref. Data, 35(4), 1475 (2006).

[33] A. Stoppa, O. Zech, W. Kunz, and R. Buchner, J. Chem. Eng. Data, 55, 1768 (2010).

[34] H. Donald, B. Jenkins, H.K. Roobottom, J. Passmore and L. Glasser, Inorg. Chem., 38, 3609 (1999).

[35] H. Tokuda, K. Hayamizu, K. Ishii, M. Susan, and M. Watanabe, J. Phys. Chem. B, 108, 16593 (2004).

[36] K. M. Dieter; C.J. Dymek; N.E. Heimer; J. W. Rovang; J.S. Wilkes, J. Am. Chem. Soc., 110, 2726 (1988).

[37] K. Dong, S. Zhang, D. Wang, and X. Yao, J. Phys. Chem. A, 110, 9775 (2006).

[38] J. Leys, M. Wubbenhorst, C. Menon, R. Rajesh, J. Thoen, C. Glorieux, P. Nockemann, B. Thijs, K. Binnemans, S. Longue-mart, J. Chem Phys., 128, 064509 (2008).

[39] K.R. Seddon, A. Stark, M.J. Torres, Pure Appl. Chem., 72, 2275 (2000).

[40] A. Stoppa, J. Hunger, R. Buchner, J. Chem. Eng. Data, 54, 472 (2009).