Nanocomposite Sheets Composed of Polyaniline Nanoparticles and Graphene Oxide as Electrode Materials for High-performance Supercapacitor

Nanocomposite Sheets Composed of Polyaniline Nanoparticles and Graphene Oxide as Electrode Materials for High-performance Supercapacitor

Shuhua Pang Weiliang Chen Zhewei Yang Zheng Liu Xin Fan Xu Xu

Guilin University of Technology

Key Laboratory of New Processing Technology for Nonferrous Metal and Materials of Ministry of Education, College of Materials Science & Engineering, Guilin University of Technology, Guilin 541004, China

Corresponding Author Email:;
October 12, 2017
January 06, 2018
27 April 2018
| Citation

Composite materials based on the combination of graphene oxide and PANI are expected not only to improve the PANI conductivity, but also relieve graphene oxide aggregation via a synergistic effect. We report an easy synthesis of a polyaniline/graphene oxide (PGO) composite with a relatively high specific capacitance by chemical oxidation polymerization. As the employ of phytic acid and increasing aniline monomer concentration, more and more PANI nanoparticles deposited into the interval between GO layers. PGO3 composite exhibits the largest specific capacitance (349 F·g-1) and PGO4 composite follows (314 F·g-1), whereas PGO has a minimal specific capacitance (206 F·g-1). The enhanced capacitance originates from the high capacitance of more PANI nanoparticles and better configuration as well as higher surface area of PGO3 and PGO4 composites for fast ion transport. The as-prepared PGO3 sheets composite with improved electrochemical performance is a promising electrode material for supercapacitor.


nanocomposite; polyanitine; graphene oxide sheets; electrode materials; high-performance

1. Introduction
2. Experimental Materials
3. Results and Discussion
4. Conclusions
5. Acknowledgments

This work was financially supported by Natural Science Founda-tion of Guangxi Province (2015GXNSFAA139277 and 2015GXNSFBA139231), Open Fund of Key Laboratory of New Processing Technology for Nonferrous Metal and Materials of Ministry of Education (14KF-1, 13KF-4), Innovation Project of Guangxi Graduate Education (YCSW2018153, JGY2018073) and National Natural Science Foundation of China (51363005).


[1] G.R. Xu, J.J. Shi, W.H. Dong, Y. Wen, X.P. Min, A.P. Tang, J. Alloy. Compd., 630, 266 (2015).

[2] Q. Chen, T. Zhang, X. Qiao, D. Li, J. Yang, J. Power Sources, 234, 197 (2013).

[3] Q. Liu, Z. Tang, M. Wu, B. Liao, H. Zhou, B. Ou, G. Yu, Z. Zhou, X. Li, RSC Adv., 5, 8933 (2015).

[4] G.R. Xu, X.P. Min, Q.L. Chen, Y. Wen, A.P. Tang, H.S. Song, J. Alloy. Compd., 691, 1018 (2017).

[5] Q. Chen, Y. Wang, T. Zhang, W. Yin, J. Yang, X. Wang, Electrochimica Acta, 83, 65 (2012).

[6] Z. L. Wang, X. J. He, S. H. Ye, Y. X. Tong, G. R. Li, ACS Appl. Mater. Interfaces, 6, 642 (2014).

[7] B. Ou, W. Wang, H. Zhou, C. He. RSC Adv., 4, 52950 (2013).

[8] J. Xu, K. Wang, S. Z. Zu, B. H. Han, Z. Wei, ACS Nano, 4, 5019 (2010).

[9] D. Hulicova-Jurcakova, M. Seredych, G. Q. Lu, T. J. Bandosz, Adv. Funct. Mater., 19, 438 (2009).

[10] L. Li, E. Liu, J. Li, Y. Yang, H. Shen, Z. Huang, X. Xiang, W. Li, J. Power Sources, 195, 1516 (2010).

[11] Z. Wen, X. Wang, S. Mao, Z. Bo, H. Kim, S. Cui, G. Lu, X. Feng, J. Chen, Adv. Mater., 24, 5610 (2012).

[12] X. Li, B. Wei, Nano Energy, 2, 159 (2013).

[13] G.R. Xu, Y. Wen, X. Min, W.H. Dong, A.P. Tang, H.S. Song, Electrochim. Acta, 186, 133 (2015).

[14] D. Liu, X. Wang, X. Wang, W. Tian, J. Liu, C. Zhi, D. He, Y. Bando, D. Golberg, J. Mater. Chem. A, 1, 1952 (2013).

[15] S. P. Lim, N. M. Huang, H. M. Lim, Ceram. Int., 39, 6647 (2013).

[16] Z. S. Wu, W. C. Ren, L. B. Gao, J. P. Zhao, Z. P. Chen, B. L. Liu, D. M. Tang, B. Yu, C. B. Jiang, H. M. Cheng, ACS Nano, 3, 411 (2009).

[17] E. Frackowiak, F. Beguin, Carbon, 39, 937 (2001).

[18] Y. Wang, Z. Q. Shi, Y. Huang, Y. F. Ma, C. Y. Wang, M. M. Chen, Y. S. Chen, J. Phys. Chem. C, 113, 13103 (2009).

[19] J. Y. Huang, K. Wang, Z. X, Wei, J. Mater. Chem., 20, 1117 (2010).

[20] K. Wang, J. Y. Huan, Z. X. Wei, J. Phys. Chem. C, 114, 8062 (2010).

[21] H. Zhang, G. P. Cao, Z. Y. Wang, Y. S. Yang, Z. J. Shi, Z. N. Gu, Eletrochem. Commun., 10, 1056 (2008).

[22] H. Zhang, G. P. Cao, W. K. Wang, K. G. Yuan, B. Xu, W. F. Zhang, J. Cheng, Y. S. Yang, Electrochim. Acta, 54, 1153 (2009).

[23] M. Yu, Y. Ma, J. Liu, S. Li, Carbon, 87, 98 (2015).

[24] Z. Li, H. Zhang, Q. Liu, L. Sun, L. Stanciu, J. Xie, ACS Appl. Mater. Interfaces, 5, 2685 (2013).

[25] H. B. Zhao, J. Yang, T. T. Lin, Q. F. Lv, G. Chen, Chem. Eur. J., 21, 682 (2015).

[26] X. Li, Q. Zhong, X. Zhang, T. Li, J. Huang, Thin Solid Films, 584, 348 (2015).

[27] Y. Liu, R. Deng, Z. Wang, H. Liu, J. Mater. Chem., 22, 13619 (2012).

[28] S. Park, R. S. Ruoff, Nat. Nanotechnol., 4, 217 (2009).

[29] W. Fan, C. Zhang, W. W. Tjiu, K. P. Pramoda, C. He, T. Liu, ACS Appl. Mater. Interfaces, 5, 3382 (2013).

[30] X. Fan, Z. W. Yang, Z. Liu, Chin. J. Chem., 34, 107 (2016).

[31] H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, Electrochem. Commun., 11, 1158 (2009).

[32] K. Zhang, L. L. Zhang, X. S. Zhao, J. Wu, Chem. Mater., 22, 1392 (2010).

[33] W. L. Zhang, B. J. Park, H. J. Choi, Chem. Commun., 46, 5596 (2010).

[34] K. S. Kim, I. Y. Jeon, S. N. Ahn, Y. D. Kwon, J. B. Baek, J. Mater. Chem., 21, 7337 (2011).

[35] C. Basavaraja, W. J. Kim, Y. D. Kim, D. S. Huh, Mater. Lett., 65, 3120 (2011).

[36] L. Mao, K. Zhang, H. S. On Chan, J. Wu, J. Mater. Chem., 22, 80 (2012).

[37] D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, J. M. Tour, ACS Nano, 4, 4806 (2010).

[38] X. G. Li, Q. F. Lv, M. R. Huang, Chem. Eur. J., 12, 1349 (2006).

[39] S. Stankovich, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Carbon, 44, 3342 (2006).

[40] S. Z. Zu, B. H. Han, J. Phys. Chem. C, 113, 13651 (2009).

[41] S. Numao, K. Judai, J. Nishijo, K. Mizuuchi, N. Nishi, Carbon, 47, 306 (2009).

[42] J. Yan, T. Wei, B. Shao, F. Ma, Z. Fan, M. Zhang, C. Zheng, Y. Shang, W. Qian, F. Wei, Carbon, 48, 1731 (2010).

[43] H. Li, J. Wang, Q. Chu, Z. Wang, F. Zhang, S. Wang, J. Power Sources, 190, 578 (2009).