Functionalization of Carbon Fibers with Nitrogen and Oxygen as High Performance Supercapacitor

Functionalization of Carbon Fibers with Nitrogen and Oxygen as High Performance Supercapacitor

Kun Luo Min Zhu Yuzheng Zhao Zhihong Luo*

Guangxi Key Laboratory of Universities for Clean Metallurgy Comprehensive Utilization of Nonferrous Metal Resource, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004,PR China

Corresponding Author Email:
24 August 2017
25 September 2017
6 November 2017
| Citation

Functionalization of carbon materials with heteroatom is highly desirable for high-performance supercapacitor applications. Here, a combined method is used to prepare nitrogen and oxygen co-doped carbon fibers by acidification and N2 cold plasma treatment. Oxygen groups are introduced by acidification, and N2 groups are introduced by N2 cold plasma treatment mainly, moreover, acidification and plasma treatment time promote the increase of nitrogen content. The functionalized CFs obtained by acidification and plasma treat-ment for 60 min has high nitrogen (4.23 at.%) and oxygen (17.48 at.%) content, which shows high specific capacitance (190 F g-1 at 0.2 A g-1) and good cycling stability with maintaining about 83% of initial capacitance after 4000 cycles.


cold plasma, oxygen groups, nitrogen groups, carbon fibers, supercapacitors

1. Introduction
2. Experimental
3. Results and Discussions
4. Conclusions
5. Acknowledgement

[1] J. Yan, T. Wei, B. Shao, et al., Carbon, 48, 487 (2010).

[2] M. K. Liu, S. X. He, Y. E. Miao, et al. RSC Adv., 5, 55109 (2015).

[3] Z. H. Luo, L. H. Zhu, Y. F. Huang, et al. Synth. Met., 175, 88 ( 2013).

[4] L. S. Zhang, Q. W. Ding, Y. P. Huang, et al., ACS Appl. Mater. Interfaces, 7, 22669 (2015).

[5] B. Xu, S. F. Yue, Z. Y. Sui, et al., Sci., 4, 2826 (2011).

[6] H. L. Guo, P. Su, X. F. Kang, et al., J. Mater. Chem. A, 1, 2248 (2013).

[7] H. M. Jeong, J. W. Lee, W. H. Shin, et al., Nano Lett., 11, 2472 (2011).

[8] V. H. Pham, S. H. Hur, E. J. Kim, et al.,Chem. Commun., 49, 6665 (2013).

[9] J. H. Yang, M. R. Jo, M. Kang, et al., Carbon, 73, 106 (2014).

[10]Z. Y. Sui, Y. N. Meng, P. W. Xiao, et al., ACS Appl. Mater. Interfaces, 7, 1431 (2015).

[11]O. Y. Podyacheva, S. V. Cherepanova, A. I. Romanenko, et al., Carbon, 122, 475 (2017).

[12]Z. H. Luo, M. Zhu, Y. Z. Zhao, et al., J. New Mater. Electro-chem. Systems, 20, 95 (2017).

[13]X. Q. Yang, C. F. Li, R. W. Fu, J. Power Sources, 319, 66 (2016).

[14]X. Q. Yang, H. Ma, G. Q. Zhang, Langmuir, 33, 3975 (2017).

[15]X. Q. Yang, J. L. Yu, W. J. Zhang, et al., RSC Adv., 7, 15096 (2017).

[16]X. W. Wang, G. Z. Sun, P. Routh, etal., Chem. Soc. Rev., 43, 7067 (2014).

[17]S. H. Park, J. Chae, M. H. Cho, et al., J. Mater. Chem. C, 2, 933 (2014).

[18]F. Poncin-Epaillard, J. C. Brosse, T. Falher, Macromolecules, 30, 4415 (1997).

[19]V. K.Abdelkader, S. Scelfo, C. García-Gallarín et al., J. Phys. Chem. C, 117, 16677 (2013).

[20]O. Chirila, M. Totolin, G. Cazacu, Ind. Eng. Chem. Res., 52, 13264 (2013).

[21]K. H. Lee, J. Oh, J. G. Son, etal., ACS App. Mater. Interfaces, 6, 6361 (2014).

[22]Y. Wang, Y. Y. Shao, D. W. Matson, et al., ACS Nano, 4, 1790 (2010).

[23]P.M. Korusenko, V.V. Bolotov, S.N. Nesov et al., Nucl. In-strum. Meth. Phys. Res. B, 358, 131 (2015).

[24]J. Zhang, S. Y. Wu, X. Chen, et al., J. Power Sources, 271, 522 (2014).

[25]W. Fan, Y. Y. Xia, W. W. Tjiu, et al., J. Power Sources, 243, 973 (2013).

[26]A. Ganguly, S. Sharma, P. Papakonstantinou, et al., J. Phys. Chem. C, 115, 17009 (2011).

[27]Z. L. Lin, Y. Liu, Y. G. Yao, et al.,J. Phys. Chem. C, 115, 7120 (2011).

[28]M. Vujković, N. Gavrilov, I. Pašti, Carbon, 64, 472 (2013).

[29]Z.H. Luo, L.H. Zhu, Y.F. Huang et al., Synth. Met., 175, 88 (2013).

[30]N.P. Subramanian, X. Li, V. Nallathambi et al., J. Power Sources, 188, 38 (2009).

[31]H.Y. Liu, H.H. Song, X.H. Chen, J. Power Sources, 285, 303 (2015).

[32]C. Moreno-Castilla, M. B. Dawidzuik, Carbon, 50, 3324 (2009).