TiO2-B/Ag Nanocomposite Wires Enhanced Electrochemical Performance for Li-ion Batteries
OPEN ACCESS
In this work, the pristine and Ag-composited TiO2-Bronze (TiO2-B) nanowires are successfully synthesized by hydrothermal method using anatase(P25) as titanium source. The SEM, TEM results reveal that the silver particles are well distributed on the TiO2-B nanowires. Also, the TiO2-B/Ag nanowires are dispersed very well, which demonstrate more Li-ion insertion/extraction hosts exposed to the electrolyte. Moreover, the electrochemical performance tests suggest that compared with the pristine TiO2-B, the Ag-composited TiO2-B (TiO2-B/Ag) shows remarkably higher capacities (~286mAhg-1, closing to the theoretical capacity) and superior rate capability. The reasons causing this performance difference are ascribed to the added silver particles, which could reduce the Li-ion diffusion length and improve the material electrical conductivity.
hydrothermal,TiO2-B/Ag, nanowires
[1] C. Liu, F. Li, L.-P. Ma and H.-M. Cheng, Adv. Mater.,22, E28 (2010).
[2] J. B. Goodenough and K.-S. Park, J. Am. Chem. Soc., 135, 1167 (2013).
[3] B. Dunn, H. Kamath and J.-M. Tarascon, Science, 334, 928 (2011).
[4] V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach, Energy Environ. Sci., 4, 3243 (2011).
[5] E. Uchaker and G. Cao, Nano Today, 9, 499 (2014).
[6] M. Armand and J. M. Tarascon, Nature, 451, 652 (2008).
[7] Y.-S. Su, Y. Fu, T. Cochell and A. Manthiram, Nat. Commun., 4, 2985 (2013).
[8] J.-T. Han, Y.-H. Huang and J. B. Goodenough, Chem. Mater., 23, 2027 (2011).
[9] H. Li, L. Shen, G. Pang, S. Fang, H. Luo, K. Yang and X. Zhang, Nanoscale, 7, 619 (2015).
[10]J. Shu, Electrochem. Solid-State Lett., 11, A238 (2008).
[11]L. Shen, B. Ding, P. Nie, G. Cao and X. Zhang, Adv. Energy Mater., 3, 1484 (2013).
[12]M. M. Thackeray, C. Wolverton and E. D. Isaacs, Energy Environ. Sci., 5, 7854 (2012).
[13]P. G. Bruce, B. Scrosati and J. M. Tarascon, Angew. Chem., Int. Ed., 47, 2930 (2008).
[14]X. Su, Q. Wu, X. Zhan, J. Wu, S. Wei and Z. Guo, J. Mater. Sci., 47, 2519 (2012).
[15]Z. Hong and M. Wei, J. Mater. Chem. A, 2013, 1, 4403 (2013).
[16]A. R. Armstrong, G. Armstrong, J. Canales, R. García and P. G. Bruce, Adv. Mater., 17, 862 (2005).
[17]H. Liu, Z. Bi, X.-G. Sun, R. R. Unocic, M. P. Paranthaman, S. Dai and G. M. Brown, Adv. Mater., 23, 3450 (2011).
[18]S. Liu, H. Jia, L. Han, J. Wang, P. Gao, D. Xu, J. Yang and S. Che, Adv. Mater., 24, 3201 (2012).
[19]V. Etacheri, Y. Kuo, A. Van der Ven and B. M. Bartlett, J. Mater. Chem. A, 1, 12028 (2013).
[20]V. Etacheri, J.E. Yourey, B.M. Bartlett, ACS Nano, 8, 1491 (2014).
[21]T. Lan, J. Dou, F. Xie, P. Xiong, M. Wei, J. Mater. Chem. A, 3, 10038 (2015).
[22]Z. Yang, G. Du, Z. Guo, X. Yu, Z. Chen, T. Guo, H. Liu, J. Mater. Chem., 21, 8591 (2011).
[23]H.C. Tao, L.Z. Fan, X. Yan, X. Qu, Electrochim. Acta, 69, 328 (2012).
[24]Z. Sun, X. Huang, M. Muhler, W. Schuhmann, E. Ventosa, Chem. Commun., 50, 3306 (2014).
[25]X. Li, Y. Zhang, T. Li, Q. Zhong, H. Li, J. Huang, J. Power Sources, 268, 372 (2014).
[26]X. Yan, Y. Li, M. Li, Y. Jin, F. Du, G. Chen, Y. Wei, J. Mater. Chem. A, 3, 4180 (2015).
[27]M. Zhen, S. Guo, G. Gao, Z. Zhou, L. Liu, Chem. Commun., 51, 507 (2015).
[28]C. Chen, X. Hu, Z. Wang, X. Xiong, P. Hu, Y. Liu and Y. Huang, Carbon, 69, 302 (2014).
[29]M. Zhen, S. Guo, G. Gao, Z. Zhou and L. Liu, Chem. Commun., (2015).
[30]T. Beuvier, M. Richard-Plouet, M. Mancini-Le Granvalet, T. Brousse, O. Crosnier and L. Brohan, Inorg. Chem., 49, 8457 (2010).
[31]Zhang Y, Meng Y, Zhu K, Qiu H, Ju Y, Gao Y, Du F, Zou B, Chen G, Wei Y., J. Acs Applied Materials & Interfaces (2016).
[32]L. Cui, J. Shen, F. Cheng, Z. Tao and J. Chen, J. Power Sources, 196, 2195 (2011).