Effect of Co-Substitution on the Electrocatalytic Properties of Ni1.5Fe1.5O4 for Oxygen Evolution in Alkaline Solutions

Effect of Co-Substitution on the Electrocatalytic Properties of Ni1.5Fe1.5O4 for Oxygen Evolution in Alkaline Solutions

N.K. Singh* Ritu Yadav M.K. Yadav Carlos Fernandez

Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow –226007 (India)

School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB10 7GJ Scotland, UK

Corresponding Author Email: 
nksbhu@yahoo.com, singh_narendra@lkouniv.ac.in
Page: 
115-121
|
DOI: 
https://doi.org/10.14447/jnmes.v20i3.317
Received: 
14 June 2017
| |
Accepted: 
26 June 2017
| | Citation
Abstract: 

Some ternary ferrites having composition CoxNi1.5-xFe1.5O4 (0.0 ≤ x ≤ 1.25) have been synthesized by NH4OH co-precipitation method at 11.5 pH. Materials, so obtained, were tested for their electrocatalytic properties towards oxygen evolution reaction (OER) in the form film on Ni-support in alkaline solution. The study showed that the electrocatalytic properties the material increased with partial substitution of Co for Ni in the base oxide (Ni1.5Fe1.5O4). The value being highest with 0.5 mol Co-substitution. At E = 850 mV vs Hg/HgO in 1M KOH at 25 ºC, the electrode showed apparent current density 206.2 mA cm-2, which is about 3 times higher than the base oxide. The Tafel slope values were ranged between 46-82 mV decade-1. A pair of redox peak, an anodic (EPa = 522±28 mV) and corresponding cathodic (EPc= 356±9 mV), was observed in the cyclic voltammetry (CV) study of the material. The thermodynamic parameters namely, standard apparent electrochemical enthalpy of activation ( ), standard enthalpy of activation ( ) and standard entropy of activation ( ) for the oxygen evolution reaction (OER) have also been determined by recording anodic polarization curve in 1M KOH. The value of  was observed to be almost similar with each oxide electrode. The  values were highly negative and ranged between ~ -165 and ~ -207 J deg-1 mol-1. Phase and morphology of materials have been investigated by using physical techniques X-ray diffraction, infrared spectroscopy (IR) and scanning electron microscope (SEM), respectively.

Keywords: 

co-precipitation, XRD, SEM, electrocatalysis, oxygen evolution, activation energy

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
5. Acknowledgments
  References

[1] Pulfer S. K., Gallo J. N., Scientific and Clinical Applications of magnetic carriers, Häfeli U., Schütt W., Teller J., Zborowski M., (Plenum Press: New York) 1997, p. 445. [2] Zarur A. J., Ying J. V., Nature, 403, 65 (2000).

[3] Sousa M. H., Hasmonay E., Depeyrot J., Tourinho F. A., Bacri J. C., Dubosis E., Perzyski R., Raikherb Y. L., Magn J., Mater., 242, 572 (2002).

[4] Raj K., Moskowitz R., J. Magn. Magn. Mater., 85, 233 (1990). 

[5] Sepelak V., Baabe D., Mienert D., Schultze D., Krumeich F., Litterst F. J., Becker K. D., Magn Mater, 257, 377 (2003).

[6] Rajaram R. R., Sermon, J. Chem. Soc. Faraday Trans., 81, 2277 (1985).

[7] Trasatti S.,Lodi G., Electrodes of Conductive Metallic Oxides, Part B, edited by Trasatti S. (Elsevier, Amsterdam) 1981, 569. 

[8] Harold H. K., Mayfair C. K., Adv. Catal., 33, 159 (1985).

[9] Kota H. M., Katan J., Chim M., Schoenweis, Nature, 203, 1281 (1964).

[10]Tarasevich M. R., Efremov B. N., Electrodes of conductive metallic oxides, Part A, edited by Trasatti S., (Elsevier, Amsterdam), 1980.

[11]Boggio R., Camgati A., Trassati S., J. Appl. Electrochem., 17, 828 (1987).

[12]Da Silva L. M., De Faria L. A., Boodts J. F. C., J. Electroanal. Chem., 141, 532 (2002).

[13]Tavares A. C., Cartaxo M. A. M., Da Silva Pereira M., Costa F. M., J. Solid State Electrochem., 5, 57 (2001).

[14]Nikilov I., Darkaoui R., Zhecheva E., Stoyanova R., Dimitrov N., Vitanov T., J. Electroanal Chem., 429, 157 (1997).

[15]Yuh-Shu L., Chi-Chang H., Jen-Chen W., J. Electrochem. Soc., 143(4), 1218 (1996).

[16]Iwakura C., Nishioka M., Tamura H., Nippon Kagaku Kaishi, 7, 136 (1982).

[17]Iwakura C., Honji A., Tamura H., Electrochim. Acta., 26, 1319 (1981).

[18]Rasiyah P., Tseung A. C. C., J. Electrochem. Soc., 130, 365 (1983).

[19]Orehotsky J., Huang H., Davidson C. R., Srinivasan S., J. Elec-troanal. Chem., 95, 233 (1979).

[20]Singh N. K., Tiwari S. K., Anitha K. L., Singh R. N., J. Chem. Soc. Faraday Trans., 92(13), 2397 (1996).

[21]Bocca C., Barbucci A., Deluchi M., Ceriola G., Int. J. Hydro-gen Energy, 24, 21 (1999).

[22]Bocca C., Ceriola G., Magnone E., Barbucci A., Int. J. Hydro-gen Energy, 24, 699 (1999).

[23]Baydi M. El., Poillerat G., Rehspringer J. L., Gautier J. L., Koenig J. F., Chartier P., J. Solid State Chem., 109, 281 (1994).

[24]Martin J. L., Vidales de, Martinez Garcia O., Vila E., Rojas R. N., Torralvo M. J., Mat. Res. Bull., 28, 1135 (1993).

[25]Baydi M. El., Tiwari S. K., Singh R. N., Koenig J. F. Poillerat G., J. Solid State Chem., 116, 157 (1995).

[26]Singh N. K., Singh J. P., Singh R. N., Int. J. Hydrogen Energy, 27, 895 (2002).

[27]Svegl F., Orel B., Svegl I. G., Kaucic V., Electrochim. Acta, 45, 4359 (2000).

[28]Singh J. P., Singh N. K., Singh R. N., Int. J. Hydrogen Energy, 24, 433 (1999).

[29]Singh R. N., Singh J. P., Lal B., Singh A., Int. J. Hydrogen Energy, 32, 11 (2007).

[30]Singh N. K., Singh R. N., Ind. J. Chem., 38A, 491 (1999).

[31]Singh R. N., Singh J. P., Singh A., Int. J. Hydrogen Energy, 33, 4260 (2008).

[32]Al-Hoshan M. S., Singh J. P., Al-Mayouf A. M., Al-suhybani A. A., Shaddad M. N., Int. J. Electrochem. Sci., 7, 4959 (2012).

[33]Mendonca M. H., Godinho M. I., Catarino M. A., Da silva Pereira M. I., Costa F. M., Solid State Science, 4, 175 (2002).

[34]Godinho M. I., Catarino M. A., Da silva Pereira M. I., Men-donca M. H., Costa F. M., Electrochim. Acta, 47, 4307 (2002).

[35]Singh R. N., Singh N. K., Singh J. P., Electrochim. Acta, 47, 3873 (2002).

[36]Singh R. N., Singh N. K., Singh J. P., Balaji G., Gajbhiye N. S., Int. J. Hydrogen Energy, 31, 701 (2006).

[37]Singh R. N., Singh J. P., Lal B., Singh A., Int. J. Hydrogen Energy, 32, (2007).

[38]Anindita, Singh A., Singh R. N., Int. J. Hydrogen Energy, 35, 3243 (2010).

[39]Tiwari S. K., Chartier P., Singh R. N., J. Electrochem. Soc. 142, 148 (1995).

[40]Gillot B., Laarz M., Kacim S., J. Mater. Chem. 7, 827 (1997).

[41]Gillot B., Nivoix V., Kester E., Nusillard O., Villete .C, Tailhades Ph., Rousset A., Mater. Chem. Phys., 48, 111 (1997).

[42]Okasha N., Mater. Chem. Phys., 84, 63 (2004).

[43]Fradette N., Marsan B., J. Electrochem. Soc., 145, 2320 (1998).

[44]Egelund S., Caspersen M., Nikiforov A., Moller P., Int. J. Hy-drogen Energy, 41, 10152 (2016).

[45]Trasatti S., in The Electrochemistry of Novel Materials ed. Lipkowski J., Ross P. N., VCH, New York, 1994.

[46]Singh R. N., Tiwari S. K., Singh S. P., Singh N. K., Pollerat G., Chartier P., J. Chem. Soc. Faraday Trans., 92(14), 2593 (1996).

[47]Gileadi E., Electrode Kinetics, (VCH Publishers Inc., New York), 1993 p.151.