Green Functionalization and Supercapacitive Properties of Carbon Nanotubes by Atmospheric Pressure Non-Thermal Plasma Treatment

Green Functionalization and Supercapacitive Properties of Carbon Nanotubes by Atmospheric Pressure Non-Thermal Plasma Treatment

Zhihong Luo Min Zhu Yuzhen Zhao Kun Luo*

Guangxi Key Laboratory of Universities for Clean Metallurgy Comprehensive Utilization of Nonferrous Metal Resource, Guilin University of Technology, Guilin, 541004, PR China

Corresponding Author Email: 
luokun@glut.edu.cn
Page: 
95-100
|
DOI: 
https://doi.org/10.14447/jnmes.v20i3.268
Received: 
12 April 2017
| |
Accepted: 
26 June 2017
| | Citation
Abstract: 

Functionalization of carbon nanotubes proceeds by using atmospheric pressure non-thermal plasma treatment, where NH3 is used as nitrogen sources which is excited either by alternating currents (AC) or direct currents (DC). The content and species of the functional groups are analyzed by XPS which displays that heteroatom content increases 1.6 at.%, the main nitrogen groups are pyridinic nitrogen (N-6) and amino (-NH2), and HO-C=O, C=O and C-OH surface groups are also incorporated. The supercapacitive performance of the pristine CNTs, CNT-DC and CNT-AC electrodes are measured and the specific capacitance of CNTs is increased after plasma treatment, which indicate that the surface functionalization facilitate the improvement on supercapacitive properties.

Keywords: 

atmospheric non-thermal plasma, carbon nanotubes, functionalization, nitrogen doping, supercapacitive performance

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
5. Acknowledgments
  References

[1] S. Iijima, Nature, 354, 56 (1991).

[2] W. Fan, Y.E. Miao, L.S. Zhang, Y.P. Huang, T.X. Liu, RSC Adv., 5, 31064 (2015).

[3] Z.H. Luo, X.Q. Zhuge, Y.Z. Zhao, M.X. He, L.H. Zhu, H.Q. Tang, K. Luo, Nano, 10, 75 (2015).

[4] T. Morishita, M. Matsushita, Y. Katagiri, K. Fukumori, Carbon, 48, 2308 (2010).

[5] L. Mao, K. Zhang, H.S.O. Chan, J.S. Wu, J. Mater. Chem., 22, 80 (2011).

[6] X.P. Lu, Y.T. Hu, L. Wang, Q.H. Guo, S.L. Chen, S.H. Chen, H.Q. Hou, Y.H. Song, Electrochimica Acta, 189, 158 (2016).

[7] J. Wu, W.W. Liu, Y.X. Wu, T.C. Wei, D.S. Geng, J. Mei, H. Liu, W.M. Lau, L.M. Liu, Electrochimica Acta, 203, 21 (2016).

[8] H.Y. Liu, H.H. Song, X.H. Chen, S. Zhang, J.S. Zhou, Z.K. Ma, J. Power Sources, 285, 303 (2015).

[9] T.T. Zhu, J. Zhou, Z.H. Li, S.J. Li, W.J. Si, S.P. Zhuo, J. Mater. Chem. A, 2, 12545 (2014).

[10]P.E. Fanning, M.A. Vannice, Carbon, 31, 721 (1993).

[11]G.Q. Ning, C.G. Xu, X. Zhu, R.F. Zhang, W.Z. Qian, F. Wei, Z.J. Fan, J.S. Gao, Carbon, 56, 38 (2013).

[12]Y.Z. Wang, Y. Liu, W. Liu, H.Y. Chen, G.X. Zhang, J.H. Wang, Mater. Lett., 154, 64 (2015).

[13]H.Q. Sun, C. Kwan, A. Suvorova, H.M. Ang, M.O. Tadé, S.B. Wang, Appl. Catal. B: Environ., 154-155, 134 (2014).

[14]H.F. Xiong, M.A. Motchelaho, M. Moyo, L.L. Jewell, N.J. Coville, Appl. Catal. A: Gen., 482, 377 (2014).

[15]J.Y. Yook, J. Jun, S.J. Kwak, Appl. Surf. Sci., 256, 6941 (2010).

[16]C.L. Chen, B. Liang, D. Liu, A. Ogino, X.K. Wang, M. Nagatsu, Carbon, 48, 939 (2010).

[17]H.R. Barzegar, E. Gracia-Espino, T. Sharifi, F. Nitze, T. Wågberg, J. Phys. Chem. C, 117, 25805 (2013).

[18]L.F. Lai, H.P. Yang, L. Wang, B.K. The, J. Zhong, H. Chou, L. Chen, W. Chen, Z. Shen, R.S. Ruoff, J. Lin, ACS Nano, 6, 5941 (2012).

[19]C.L. Wang, Y. Zhou, L. Sun, Q. Zhao, X. Zhang, P. Wan, J.S. Qiu, J. Phys. Chem. C, 117, 14912 (2013).

[20]H.L. Wang, Q.L. Hao, X.J. Yang, L. Lu, X. Wang, ACS Appl. Mater. Interfaces, 2, 821 (2010).

[21]H.Y. Liu, H.H. Song, X.H. Chen, S. Zhang, J.S. Zhou, Z.K. Ma, J. Power Sources, 285, 303 (2015).

[22]Z.Y. Lin, Y. Liu, Y.G. Yao, O.J. Hildreth, Z. Li, K. Moon, C.P. Wong, J. Phys. Chem. C, 115, 7120 (2011).

[23]L.F. Lai, L.W. Chen, D. Zhan, L. Sun, J.P. Liu, S.H. Lim, C.K. Poh, Z.X. Shen, J.Y. Lin, Carbon, 49, 3250 (2011).

[24]Z.H. Luo, L.H. Zhu, Y.F. Huang, H.Q. Synth. Met., 175, 88 (2013).