Feasibility of the Redox Sulfur Recovery Process using Heteropoly Molybdophosphate

Feasibility of the Redox Sulfur Recovery Process using Heteropoly Molybdophosphate

E. Fuentes-Quezada A. K. Cuentas-Gallegos J. G. Rivera F. Castaneda G. Orozco*

Centro de Investigación y Desarrollo Tecnológico en Electroquímica, P. Tecnológico, ZP. 76703 Pedro Escobedo, Querétaro, México

Instituto de Energías Renovables, Universidad Nacional Autónoma, de México, Priv. Xochicalco s/n, Col. Centro, Temixco 62580, Morelos, México

Corresponding Author Email: 
gorozco@cideteq.mx
Page: 
85-90
|
DOI: 
https://doi.org/10.14447/jnmes.v19i2.334
Received: 
17 March 2016
| |
Accepted: 
26 April 2016
| | Citation

OPEN ACCESS

Abstract: 

The feasibility of the removal of sulfide species using acid solutions of 12-molybdophosphoric acid was studied. The key factor in this purification process is the formation of a hydrogen-bonded structure between the hydrogen sulfide species and the bridging oxygen atom of the MoO6 octahedrons of the molybdophosphate complexes. The number of bridging oxygen atoms depends of the pH. Consequently, the efficiency of the process is also largely dependent on the pH. Most of the literature focuses on the redox potentials for the purification process. The slope of the redox pair S/H2S and the molybdophosphate complexes is -59 pH/mV. The differences between the redox potentials do not fluctuate with the pH, which indicates that the oxidation of H2S by molybdophosphate complexes is spontaneous in all pH intervals but does not explain why the efficiency decreases at high pH. In summary, the Keggin-type structure contributes to the efficient removal of sulfide because this structure contains the maximum number of bridging oxygen atoms. The solubility of H2S gas is lower in acidic media. This drawback severely restricts the performance of the purification process.

Keywords: 

12-Molybdophosphoric, phosphomolybdic acid, removal of sulfur compounds, hydrogen sulfide

1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
5. Acknowledgments
  References

[1] Z. Mao, J. Electrochem. Soc. 138, 1299 (1991).

[2] B. Ateya, Electrochem. Commun., 4, 231 (2002).

[3] P.K. Dutta, R.A. Rozendal, Z. Yuan, K. Rabaey, J. Keller, Elec-trochem. Commun., 11, 1437 (2009).

[4] J.P. Fornés, J.M. Bisang, Electrochim. Acta, 173, 743 (2015).

[5] J.P. Fornés, G.A. González, J.M. Bisang, J. Chem. Technol Biotechnol., 91, 219 (2014).

[6] H. Huang, Y. Yu, K.H. Chung, Energy & Fuels, 23, 4420 (2009).

[7] Bakir Ogutveren Ulker, Electrochemical Processes for Gaseous Sulfur Oxides (SO and SOx) Removal, in: Gerhard Kreysa, Ken-ichiro Ota, Robert F. Savinell (Eds.), Encycl. Appl. Elec-trochem., Springer New York, 2014: pp. 543–548.

[8] G. Kelsall, Electrochemical Removal of H2S, in: G. Kreysa, K. Ota, R. Savinell (Eds.), Encycl. Appl. Electrochem. SE -103, Springer New York, 2014: pp. 593–600.

[9] M.T. Pope, A. Müller, Angew, Chem., Int. Ed. 30, 34 (1991).

[10]I.A. Weinstock, Chem. Rev. 98, 113 (1998).

[11]Y. Zhao, Q. Zhu, G. Gu, Water. Air. Soil Pollut., 102, 157 (1998).

[12]R. Wang, Sep. Purif. Technol., 31, 111 (2003).

[13]K. Kim, D. Song, J.-I. Han, Chem. Eng. J., 241, 60 (2014).

[14]N. Lange, Handbook of Chemistry. 15th edition, New York: McGraw-Hill, 1999.

[15]S.G. Bratsch, J. Phys. Chem. Ref. Data, 18, 1 (1989).

[16]A.J. Bard, G. Inzelt, F. Scholz, eds., in: Electrochem. Dict. SE -16, Springer Berlin Heidelberg, 2008: pp. 535.

[17]M.M. Heravi, M. Vazin Fard, Z. Faghihi, Green Chem. Lett. Rev., 6, 282 (2013).

[18]K.M. Reddy, N. Lingaiah, P.S. Sai Prasad, I. Suryanarayana, J. Solution Chem., 35, 407 (2006).

[19]G.B. McGarvey, J.B. Moffat, J. Mol. Catal., 69, 137 (1991).

[20]L. Pettersson, I. Andersson, L.O. Oehman, Inorg. Chem., 25, 4726 (1986).

[21]D. Bajuk-Bogdanovic, I. Holclajtner-Antunovic, M. Todorovic, U. Mioc, J. Zakrzewska, J. Serbian Chem. Soc., 73, 197 (2008).

[22]C.E. Easterly, D.M. Hercules, M. Houalla, Appl. Spectrosc., 55, 1671 (2001).

[23]A. Lewera, M. Chojak, K. Miecznikowski, P.J. Kulesza, Elec-troanalysis., 17, 1471 (2005).

[24]M. Sadakane, E. Steckhan, Chem. Rev., 98, 219 (1998).

[25]B. Keita, L. Nadjo, Electrochemistry of Isopoly and Heteropoly Oxometalates, in: Encycl. Electrochem., Wiley-VCH Verlag GmbH & Co. KGaA, 2007.

[26]I.K. Song, M.A. Barteau, J. Mol. Catal. A Chem., 212, 229 (2004).

[27]L. Cheng, S. Dong, J. Electroanal. Chem., 481, 168 (2000).

[28]C. Sun, J. Zhang, Electrochim. Acta, 43, 943 (1998).

[29]H.X. Guo, Y.Q. Li, L.F. Fan, X.Q. Wu, M.D. Guo, Electro-chim. Acta, 51, 6230 (2006).

[30]W. Guo, X. Tong, S. Liu, Electrochim. Acta, 173, 540 (2015).

[31]K.H. Tytko, A bond model for polyoxometalate ions composed of MO6 octahedra (MOk polyhedra with k>4), in: A. Bard, I. Dance, P. Day, J. Ibers, T. Kunitake, T. Meyer, et al. (Eds.), Bond. Charg. Distrib. Polyoxometalates A Bond Val. Approach SE -2, Springer Berlin Heidelberg, 1999: pp. 67–127.