Electrode Properties of Todorokite-type Tunnel-structured Manganese Oxide for Calcium Secondary Batteries

Electrode Properties of Todorokite-type Tunnel-structured Manganese Oxide for Calcium Secondary Batteries

Shinya Suzuki* Tsubasa Kato Hidetoshi Kawabata Masaru Miyayama

School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Corresponding Author Email: 
06 March 2016
12 April 2016
02 July 2016
| Citation



The electrode properties of todorokite-type tunnel-structured manganese oxides (TodMO) were examined for their potential use as cathode materials in calcium batteries. TodMO with a chemical composition of Mg0.19Na0.07MnO2·0.37H2O was prepared through hydrothermal treatment of layer-structured manganese oxide using magnesium ions as interlayer guest ions. The TodMO exhibited a dis-charge and charge capacity of 100 and 80 mAh g−1, respectively, at a relatively large current density of 100 mA g−1. The reaction mecha-nism was studied in detail using X-ray absorption spectroscopy measurements. Consequently, it became clear that the newly formed Mn3+-compound converted from TodMO is responsible for the reversible capacity.


todorokite-type manganese oxide, cathodes, Ca batteries, X-ray absorption spectroscopy

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
5. Acknowledgements

[1] P.G. Bruce, S. A. Freunberger, L. J. Hardwick, J.-M. Tarascon, Nat. Mat., 11, 19 (2012).

[2] F. Cheng, J. Chen, Chem. Soc. Rev., 41, 2172 (2012).

[3] J. Muldoon, C. B. Bucur, T. Gregory, Chem. Rev., 114, 11683 (2014).

[4] D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich, E. Levi, Nature, 407, 724 (2000).

[5] E. Levi, Y. Gofer, D. Aurbach, Chem. Mater., 22, 860 (2010).

[6] A. Ponrouch, C. Frontera, F. Bardé, M. R. Palacin, Nat. Mater., 15, 169 (2016).

[7] M.-C. Lin, M. G. Gong, B. Lu, Y. Wu, D.-Y. Wang, M. Guan, M. Angell, C. Chen, J. Yang, B.-J. Hwang, H. Dai, Nature, 520, 324 (2015).

[8] R. Mohtadi, F. Mizuno, J. Nanotechnol., 5, 1291 (2014).

[9] I. Kim, K. Yamabuki, M. Morita, H. Tsutsumi, N. Yoshimoto, J. Power Sources, 278, 340 (2015).

[10]E. Levi, A. Mitelman, D. Aurbach, M. Brunelli, Chem. Mater., 19, 5131 (2007).

[11]S. Rasul, S. Suzuki, S. Yamaguchi, M. Miyayama, Solid State Ionics, 225, 542 (2012).

[12]S. Rasul, S. Suzuki, S. Yamaguchi, M. Miyayama, Electro-chem. Acta, 82, 243 (2012).

[13]S. Rasul, S. Suzuki, S. Yamaguchi, M. Miyayama, Electro-chim. Acta, 110, 247 (2013).

[14]N. Kumagai, S. Komaba, H. Sakai, H. Sakai, J. Power Sources, 97–98, 515 (2001).

[15]D. Aurbach, R. Skaletsky, Y. Gofer, J. Electrochem. Soc., 138, 3536 (1991).

[16]M. Hayashi, H. Arai, H. Ohtsuka, Y. Sakurai, J. Power Sources, 119–121, 617 (2003).

[17]Z.-H. Liu, L. Kang, K. Ooi, Y. Makita, Q. Feng, J. Colloid Interface Sci., 285, 239 (2005).

[18]N. M. Brown, J. B. McMonegle, G. N. Greves, J. Chem. Soc. Faraday Trans., 80, 589 (1984).

[19]T. S. Arthur, R. Zhang, C. Ling, P.-A. Glans, X. Fan, J. Guo, F. Mizuno, ACS Appl. Mater. Interfaces, 6, 7004 (2014).