Preparation of an Active Ni2B/SBA-15 Catalyst to Improve NaBH4 Hydrolysis for Hydrogen Generation

Preparation of an Active Ni2B/SBA-15 Catalyst to Improve NaBH4 Hydrolysis for Hydrogen Generation

Fei Wu Ting Li Jindan Chen Xiu Ru Yang Cheng Ming Li Mei Qiang FanKang Ying Shu

Department of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, P R China

Zhejiang Tianneng Energy Technology Co., Ltd., Changxing County, Zhejiang Province 313100, China

Corresponding Author Email:,
27 September 2015
20 November 2015
5 December 2015
| Citation

Ni2B nanoparticle distributed on ordered SBA-15 mesoporous silica was prepared in situ and its catalytic activity for NaBH4hydrolysis was investigated in the presented paper. The problem of Ni2B aggregation is resolved and the catalytic activity of Ni2B is also improved due to the effect of SBA-15. The catalytic activity increases with Ni2B/SBA-15 weight ratio increased from 1:4 to 2:1 and the catalyst with Ni2B/SBA-15 weight ratio of 2:1 has high catalytic activity close to that of Ni2B. The sintered experiment shows that the catalytic activity comes from amorphous Ni2B, not crystalline Ni2B. High sintering temperature leads to the conversion from amorphous Ni2B to crystalline Ni2B and damages the nanostructure of amorphous Ni2B framework.


hydrogen generation; Ni2B nanoparticles; ordered SBA-15 mesoporous silica

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion

This work was financially supported by the Scientific Research Foundation for the Returned Scholars, postdoctoral support of P. R China (2015M581910), postdoctoral preferential support of Zhejiang province (BSH1502029), the National Science Founda-tion of China (Project No. 51501175), and the Guangxi Key Labor-atory of Information Materials (Guilin University of Electronic Technology, project No. 1210908-02-K).


[1] Demirci U.B., Akdim O., Miele P., Int. J. Hydrogen Energy, 34, 2638 (2009).

[2] Liu B.H., Li Z.P., J. Power sources, 187, 527 (2009).

[3] Kim J.H., Kim K.T., Kang Y.M., Kim H.S., Song M.S., Lee Y., Int J Hydrogen Energy, 29, 263 (2004).

[4] Yoshitsugu K., Suzuki K., Fukumoto K., Sasaki M., Yamamoto T., Kawai Y., Hayashi H., Int J Hydrogen Energy, 27, 1029 (2002).

[5] Krishnan P., Yang T., Lee W.Y., Kim C., J Power Sources, 143, 17 (2005).

[6] Patel N., Fernandes R., Miotello A., J Power Sources, 188, 411 (2009).

[7] Ding X.L., Yuan X., Jia C., Ma Z.F., Int. J. Hydrogen Energy, 20, 11077 (2010).

[8] Fernandes R., Patel, N., Miotello A., Applied Catalysis B: Envi-romental, 92, 68 (2009).

[9] Xu D., Wang H., Guo Q., Ji S., Fuel Process Technol., 92, 1606 (2011).

[10]Umegaki T., Yan J.M., Zhang X.B., Shioyama H., Kuriyama N., Xu Q., J. Power Sources, 191, 209 (2009).

[11]Tian H., Guo Q., Xu D., J. Power Sources, 195, 2136 (2010).

[12]Rioux R.M., Song H., Hoefelmeyer J.D., Yang P., Somorjai G. A., J. Phys. Chem. B., 109, 2192 (2005).

[13]Song H., Rioux R., James D.H., Komor R., Niesz K., Grass M., Yang P., Gabor A.S., J. Am. Chem. Soc., 128, 3027 (2006).

[14]Carrero A., Calles J. A., Vizcaino A., Applied Catalysis A: General, 327, 82 (2007).

[15]Chen Y., Kim H., Fuel Process Technol., 89, 966 (2008).

[16]Fan M.Q., .Sun L.X., Xu F., Int. J. Hydrogen energy, 37, 4571 (2012).