Influence of pH on the Electropolymerisation of 2-Aminophenol and 2-Aminobenzyl Alcohol

Influence of pH on the Electropolymerisation of 2-Aminophenol and 2-Aminobenzyl Alcohol

Ahmad S. Barham 

Basic Sciences Department, College of Engineering and Information Technology, University of Business and Technology, Jeddah, Saudi Arabia

Corresponding Author Email: 
ahmad.s@ubt.edu.sa
Page: 
37-41
|
DOI: 
https://doi.org/10.14447/jnmes.v18i1.387
Received: 
10 December 2014
| |
Accepted: 
12 January 2015
| | Citation

OPEN ACCESS

Abstract: 

The electrochemical oxidation and polymerisation of 2-aminophenol and 2-aminobenzyl alcohol in aqueous solutions of different pH values has been studied. Polymer films of the studied monomers on gold electrodes were synthesized. The behaviour of both monomers is quite different, illustrating the resonance effect of the hydroxyl group being bound directly to the benzene ring for 2-aminophenol. For each compound it is shown that oxidation in acidic solutions is most difficult due to the protonation of the amine group. These polymer films can be used for applications such as corrosion protection and as structures from which textured electrodes, microelectrode arrays for example, can be generated.

Keywords: 

electrochemical polymerization, oxidation, resonance, voltammetry

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Acknowledgements

The author is grateful for the financial support provided by the College of Engineering & Information Technology (CEIT) and to the Research & Consultation Centre (RCC) at the University of Business and Technology (UBT), Jeddah, Saudi Arabia.

  References

[1] L.H. Mascaro, A.N. Berton, L. Micaroni, Int. J. Electrochem. Sci., 2011, 8 (2011).

[2] J.M. Ortega, Thin Solid Films, 371, 28 (2000).

[3] X. Lei, Z. Su, J. Polym. Res., 15, 421 (2008).

[4] B.L. Rivas, C.O. Sánchez, J. Appl. Polym. Sci., 82, 330 (2001).

[5] F. Hua, E. Ruckenstein, J. Polym. Sci., Part A: Polym. Chem., 42, 4756 (2004).

[6] T. Ohsaka, S. Kunimura, N. Oyama, Electrochim. Acta, 33, 639 (1988).

[7] C. Barbero, J.J. Silber, L. Sereno, J. Electroanal. Chem. Interfacial Electrochem., 263, 333 (1989).

[8] C. Barbero, J.J. Silber, L. Sereno, J. Electroanal. Chem. Interfacial Electrochem., 291, 81 (1990).

[9] K. Jackowska, J. Bukowska, A. Kudelski, J. Electroanal. Chem., 350, 177 (1993).

[10] E.M. Geniès, A. Boyle, M. Lapkowski, C. Tsintavis, Synth. Met., 36, 139 (1990).

[11] S. Mu, Biosens. Bioelectron., 21, 1237 (2006).

[12] S. Mu, Electrochim. Acta, 51, 3434 (2006).

[13] A. Bonfranceschi, A. Pérez Córdoba, S. Keunchkarian, S. Zapata, R. Tucceri, J. Electroanal. Chem., 477, 1 (1999).

[14] N. Hernández, J.M. Ortega, M. Choy, R. Ortiz, J. Electroanal. Chem., 515, 123 (2001).

[15] W.M. Haynes, CRC Handbook of Chemistry and Physics, 95th Edition, CRC Press/ Taylor & Francis, Boca Raton, FL, 2014.

[16] C. Yang, P. Wan, J. Photochem. Photobiol. A, 80, 227 (1994).

[17] B. Kennedy, A. Glidle, V.J. Cunnane, J. Electroanal. Chem., 608, 22 (2007).

[18] A.S. Barham, B.M. Kennedy, V.J. Cunnane, M.A. Daous, Electrochim. Acta, 147, 19 (2014).