Effect of Structural and Electrochemical Properties of Yttrium-doped LiNi0.90Co0.05Al0.05O2 Electrode by Co-precipitation for Lithium Ion-batteries

Effect of Structural and Electrochemical Properties of Yttrium-doped LiNi0.90Co0.05Al0.05O2 Electrode by Co-precipitation for Lithium Ion-batteries

Gi-Won Yoo Tae-Jun Park Jong-Tae Son 

Department of Nano-Polymer Science & Engineering, Korea National University of Transportation Chungju, Chungbuk 380-702, Republic of Korea

Corresponding Author Email: 
June 15, 2014
| |
November 15, 2014
| | Citation



In this study, the LiNi0.90−xCo0.05Al0.05YxO2 (x = 0, 0.025, 0.075) have been synthesized by a co-precipitation and solid-state reaction method. The effect of the Y3+-doping on the structural and electrochemical properties were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and by electrochemical and impedance spectroscopy (EIS). From the results of the XRD pattern changes between before and after the doping, less cation mixing and more ordered hexagonal structure were observed for the LiNi0.875Co0.05Al0.05Y0.025O2 cathode and the cell delivered an initial discharge capacity of 195.8 mAhg-1 and was 10.2 mAhg-1 higher than the pristine cell by yttrium doping effect. High rate capability studies were also performed and showed the capacity retention of 95, 81.7 and 63.8 % at 0.2, 1.0 and 5.0 C-rate, respectively during the cycling. The impedance spectra showed that the charge transfer resistance for the pristine cathode grew significantly, while that for the Y3+-doped cathode decreased during cycling. It was concluded that the capacity fading for LiNi0.90Co0.05Al0.05O2 mainly due to the cation mixing, partially contributed by the impedance growth and by doping the pristine material with Y3+, cation mixing can be efficiently suppressed, which results in the improved rate capability.


LiNi0.9Co0.05Al0.05O2; Lithium ion battery; Cathode material; Co-precipitation; Yttrium; Electrochemical properties

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
5. Acknowledgements

This research was supported by the Global Excellent Technology Innovation of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea(No. 20135020900010), and Regional Innovation Center (RIC) Program funded by the Ministry of Trade, Industry and Energy (MOTIE) and Korea Institute for Advancement of Technology (KIAT) through the Promoting Regional specialized Industry.


[1] C.S. Kang, J.T. Son, J. Electroceram., 29, 235 (2012).

[2] J.T. Son, H.G. Kim, J. Power Sources, 147, 220 (2005).

[3] M.K. Kim, H.T. Chung, Y.J. Park, J.G. Kim, J.T. Son, K.S. Park, H.G. Kim, J. Power Sources, 99, 34 (2001).

[4] J.T. Son, E.J. Cairns, Electrochem. Solid-State Letters, 9, A27 (2006).

[5] C.S. Kang, C. Kim, T.J. Park, J.T. Son, Chem. Letters, 41, 1428 (2012).

[6] J.T. Son, H.G. Kim, Y.J. Park, Electrochim. Acta, 50, 453 (2004).

[7] S.M. Lee, S.H. Oh, J.P. Ahn, W.I. Cho, H. Jang, J. Power Sources, 159, 1334 (2006).

[8] X.X. Shia, C.W. Wang, X.L. Ma, J.T. Suna, Mater. Chem. Phys., 113, 780 (2009).

[9] Jiangfeng Xiang, Caixian Chang, Feng Zhang, Jutang Sun, J. Alloy. Compd., 475, 483 (2009).

[10]G.H. Kim, S.T. Myung, H.S. Kim, Y.K. Sun, Electrochim. Acta, 51, 2447 (2006).

[11]H. Li, G. Chen, B. Zhang, J. Xiu, Solid Sate Commun., 146, 115 (2008).

[12]P.Y. Liao, J.G. Duh, H.S. Sheu, J. Power Sources, 183, 766 (2008).

[13]C.Q. Xu, Y.W. Tian, Y.C. Zhai, L.Y. Liu, Mater. Chem. Phys., 98, 532 (2006).

[14]G.V. Subba Rao, B.V.R. Chowdari, H.J. Lindner, J. Power Sources. 313, 97–98 (2001).

[15]R.V. Mangalaraja, J. Mouzon, P. Hedstrom, I. Kero, K.V.S. Ramam, C.P. Camurri, M. Oden, J. Mater. Process. Technol., 208, 415 (2008).

[16]S.T. Myung, K. Izumi, S. Komaba, Y.K. Sun, H. Yashiro, N. Kumagai, Chem. Mater., 17, 3695 (2005).

[17]S.T. Myung, K. Izumi, S. Komaba, H. Yashiro, H.J. Bang, Y.K. Sun, N. Kumagai, J. Phys. Chem., 111, 4061 (2007).

[18]J.A. Dean, Lange’s Handbook of Chemistry, fifteenth ed., McGraw-Hill, Inc., USA, 1999.

[19]T. Ohzuku, A. Ueda, M. Nagayama, J. Electrochem. Soc., 140, 1862 (1993).

[20]G.T.K. Fey, J.G. Chen, V. Subramanian, T. Osaka, J. Power Sources, 112, 384 (2002).

[21]J.R. Reimers, E. Rossen, C.D. Jones, J.R. Dahn, Solid State Ionics, 61, 335 (1993).

[22]Daocong Li, Zhenghe Peng, Wenyong Guo, Yunhong Zhou, J. Alloy. Compd., 457, L1 (2008).

[23]L. Kavan, M. Gratzel, Electrochem. Solid State Lett., 5, A39 (2002).

[24]Y.H. Cho, J.P. Cho, J. The Electrochem. Society, 157, 625 (2010).

[25]C.S. Kang, J.T. Son, J. KIEEME. 24, 850 (2011).

[26]C. Kim, C.S. Kang, J.T. Son, J. Korea. Electrochem. Soc., 15, 95 (2012).

[27]G.Q. Liu, H.T. Kuo, R.S. Liu, C.H. Shen, D.S. Shy, X.K. Xing, J.M. Chen, J. Alloys Compd., 496, 512 (2010).

[28]Q. Cao, H.P. Zhang, G.J. Wang, Q. Xia, Y.P. Wu, H.Q. Wu, Electrochem. Commun., 9, 1228 (2007).

[29]A.J. Bard, L.R. Faulkner, Electrochemical Methods, second ed., John Wiley&Sons, New York, 2001.

[30]T. Ohzuku, A. Ueda, M. Kouguchi, J. Electrochem. Soc., 142, 4033 (1995).

[31]C. Delmas, I. Saadoune, Solid State Ionics. 53–56,370 (1992).

[32]C. Delmas, I. Saadoune, A. Rougier, J. Power Sources, 43, 595 (1993).

[33]E. Zhecheva, R. Stoyanova, Solid State Ionics, 66, 143 (1993)