New Strategy of Using Stannic Oxide as Catalyst in a Three-dimension Electrode Reactor for the Electro-oxidation of Organic Matter

New Strategy of Using Stannic Oxide as Catalyst in a Three-dimension Electrode Reactor for the Electro-oxidation of Organic Matter

Peng Li Yuemin Zhao Lizhang Wang* Binbin Ding Yunlong Hu

1School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou City, Jiangsu 221008, PR China

School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou City, Jiangsu 221008, PR China

Xuzhou Engineering Consulting Center, Xuzhou City, Jiangsu 221008, PR China

Corresponding Author Email: 
dhxktz@126.com
Page: 
243-249
|
DOI: 
https://doi.org/10.14447/jnmes.v17i4.398
Received: 
10 June 2014
|
Accepted: 
15 September 2014
|
Published: 
26 November 2014
| Citation
Abstract: 

An efficient organic-matter (OM) degradation strategy using synthetic electrocatalysis particles as fixed filler in a threedimension electrode reactor was developed. In our work, SnO2-granular active carbon (SnO2-GAC) was prepared by integrating GAC with nano-SnO2 via the sol-gel method, using SnCl4 as starting material and gelatin as a stabilizer. The phase composition and micromorphology of the particles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy and scanning/transmission electron microscopy techniques. The results showed the incorporation of SnO2 crystallized in a tetragonal lattice with an average crystallite size of 10.6 nm, which was easily accessible on the GAC surface and mesopores. Electrochemical properties were tested with cyclic voltammetry and electrochemical impedance spectroscopy methods that disclosed an improved response current with a simultaneous increase in anodicarea, while the charge-transfer and electrolyte resistance obviously decreased, in contrast to the virgin GAC filler in the three-dimensionelectrode system. Although the energy consumption of SnO2-GAC (11.71 kWh·kg−1 COD) presented slight superiority than that of GAC (13.62 kWh·kg−1 COD) at the same chemical oxygen demand (COD) conversion of 98 % when a current density of 20 A·m−2 was employed for phenolic wastewater treatment, the required degradation time of the former (47.22 h) is greatly decreased compared with that of the latter (54.24 h). These results obviously confirm the superiority of the prepared SnO2-GAC in electro-oxidation of organic matters.

Keywords: 

Stannic oxide; three-dimension electrode reactor; organic matter; energy consumption

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
5. Acknowledgements

This work was supported by a grant from the program of the Natural Science Foundation of China for Innovative Research Groups (No.51221462), the National Natural Science Foundation of China (No.50908226), the Jiangsu Provincial Research Foundation for Graduate Education in Innovation and Engineering (CXLX13-956) and the innovation and venture fund for college students of China University of Mining and Technology.

  References

[1] F.C. Walsh, Pure Appl. Chem., 73, 1819 (2001).

[2] Y.J. Feng, X.Y. Li, Water Res., 37, 2399 (2003).

[3] A.M. Polcaro, S. Palmas, F. Renoldi, M. Mascia, Electrochim. Acta, 46, 389 (2000).

[4] G. Siné, C. Comninellis, Electrochim. Acta, 50, 2249 (2005).

[5] C.C. Jara, G.R. Salazar-Banda, R.S. Arratia, J.S. Campina, Chem. Eng. J., 171, 1253 (2011).

[6] X. Yang, R. Zou, F. Huo, D. Cai, D. Xiao, J. Haz. Mat., 164, 367 (2009).

[7] F. Vicent, E. Morallòn, C. Quijada, J. Appl. Electrochem., 28, 607 (1998).

[8] H. Bi, C. Yu, W. Gao, P. Cao, Electrochim. Acta, 113, 446 (2013).

[9] Y. Feng, Y. Cui, B. Logan, Z. Liu, Chemosphere, 70, 1629 (2008).

[10] X. Chen, G. Chen, P.L. Yue, J. Phys. Chem. B, 105, 4623 (2001).

[11] L. Wang, Y. Zhao, J. Fu, J. Haz. Mat., 160, 608 (2008).

[12] N. Ominde, N. Bartlett, X.-Qing. Yang, D. Qu, J. Power Sources, 185, 747 (2008).

[13] Z. Fang, L.G. Ming, S. Yi, H. Huikang, W. Hua, Acta Chem. Sin., 64, 235 (2006).

[14] X. Haiqing, L.X. Ning, W.Y. Qiao, W.H. Lin, S.Y. Ming, Acta Phys. Chim. Sin., 25, 840 (2009).

[15] A. Khorsand Zak, A. Moradi Golsheikh, W. Haliza Abd Majid, S.M. Banihashemian, Mater. Lett., 109, 309 (2013).

[16] “Standard methods for examination of water and wastewater, 20th ed.” APHA, Washington, DC, 1998.

[17] K. Fukuda, K. Kikuya, K. Isono, M. Yoshio, J. Power Sources, 69, 165 (1997).

[18] M. Panizza, P.A. Michaud, G. Cerisola, C. Comninellis, Electrochem. Commun., 3, 336 (2001).

[19] M. Panizza, P.A. Michaud, G. Cerisola, C. Comninellis, J. Electroanal. Chem., 507, 206 (2001).

[20] M.A Rodrigo, P.A. Michaud, I. Duo, M. Panizza, G. Cerisola, C. Comninellis, J. Electrochem. Soc., 148, D60 (2001).

[21] L. Wang, Y. Hu, Y. Zhang, P. Li, Y. Zhao, Sep. Purificat. Technol., 109, 18 (2013).

[22] Q. Li, X. Yuan, G. Zeng, S. Xi, Mater. Chem. Phys., 47,239 (1997).

[23] D. Guo, Z. Jing, J. Colloid Interface Sci., 359, 257 (2011).

[24] L. Zhang, L. Xu, J. He, J. Zhang, Electrochim. Acta, 117, 192 (2014).

[23] Y.M. Abbas, S.A. Mansour, M.H. Ibrahim, S.E. Ali, J. Magnetism Magnetic Mater., 324, 2781 (2012).

[25] R.A. Torres, W. Torres, P. Peringer, C. Pulgarin, Chemosphere, 50, 97 (2003).

[26] C.C. Jara, G.R. Salazar-Banda, R.S. Arratia, J.S. Campino, M. I. Aguilera, Chem. Eng. J., 171, 1253 (2011).

[27] V.V. Panić, A.B. Dekanski, T.R. Vidaković, V.B. Mišković, B.Ž. Javanović, B.Ž. Nikolić, J. Solid State Electrochem., 9, 43 (2005).

[28] L. Wang, P. Li, Q. Yan, Water Sci. Technol., 66, 422 (2012).

[29] C. Comninellis, C. Pulgrarin, J. Appl. Electrochem., 23, 108 (1993).

[30] S. Yang, H.H. Song, X. Chen, Electrochem. Commun., 8, 137 (2006).

[31] Y. Liu, D. Yan, Y. Li, Z. Wu, R. Zhuo, S. Li, J. Feng, J. Wang, P. Yan, Z. Geng, Electrochim. Acta, 117, 528 (2014).

[32] Y. Xiong, C. He, H.T. Karlsson, X.H. Zhu, Chemosphere, 50, 131 (2003).

[33] S. Kaerhikeyan, K. Viswanathan, R. Boopathy, P. Maharaja, G. Sekaran. J. Ind. Eng. Chem., Inpress (2014).

[34] X. Zhao, A.Z. Li, R. Mao, H.J. Liu, J.H. Qu, Water Res., 51, 134 (2014).

[35] M. Panizza, A. Kapalka, C. Comninellis, Electrochim. Acta, 53, 2289 (2008).