Low Resistance, Carbon Black-free Magnetite Anode for Li-ion Batteries Obtained by One-step Attachment of Carbon Nanotubes

Low Resistance, Carbon Black-free Magnetite Anode for Li-ion Batteries Obtained by One-step Attachment of Carbon Nanotubes

P. Półrolniczak A. Arunthathy Surendran M. Walkowiak* S. Thomas A. M. Stephan

Institute of Non-Ferrous Metals Division in Poznań Central Laboratory of Batteries and Cells, Forteczna 12 St., 61-362 Poznań, Poland

Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, India 686 560an

Central Electrochemical Research Institute, Electrochemical Power Systems Division, Karaikkudi 630006, Tamil Nadu, India

Corresponding Author Email: 
marusz.walkowiak@claio.poznan.pl
Page: 
225-230
|
DOI: 
https://doi.org/10.14447/jnmes.v17i4.395
Received: 
27 May 2014
|
Accepted: 
26 September 2014
|
Published: 
25 November 2014
| Citation
Abstract: 

The paper describes a simple, one-step synthetic route for the fabrication of nanometric iron (III) oxide attached to multiwalled carbon nanotubes (MWCNT). TEM images show that magnetite nanoparticles with primary particle sizes of ca. 10 nm are preferentially located on the outer walls of carbon nanotubes. The obtained nanocomposites have been examined on reversible electrochemical insertion of lithium cations in a Li-ion cell. The presence of MWCNT brings about a substantial increase of the magnetite reversible capacities in the absence of any additional carbonaceous conductivity enhancing agent. With increasing MWCNT content in the material, reversible capacity consistently rises from 207 mAhg-1 for pure iron (III) oxide up to 763 mAhg-1 for the composite with 40 % of MWCNT. Cyclic voltammetry measurements reveal the expected large hysteresis between the reduction and oxidation peaks associated with Li+ insertion/deinsertion into magnetite crystal lattice. The reductive current peak maxima steadily rise with increasing MWCNT content from 0.15 A g-1 for pure iron (III) oxide up to 0.4 A g-1 for the composite with 40 % of MWCNT which confirms faster kinetics of electrochemical processes. EIS measurements directly proved the internal resistance decrease connected with the incorporation of MWCNT.

Keywords: 

Li-ion batteries; Fe3O4; magnetite; multi-walled carbon nanotubes

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
5. Acknowledgements

This work has been financially supported by the National Science Centre of Poland, grant No UMO-2011/03/B/ST5/01508.

  References

[1] A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk, Nat. Mater., 4, 366 (2005).

[2] Y.S. Hu, Y.G. Guo, W. Sigle, S. Hore, P. Balaya, J. Maier, Nat. Mater., 5, 713 (2006).

[3] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature, 407, 496 (2000).

[4] J. Liu, Y.L. Wan, C.P. Liu, W. Liu, S.M. Ji, Y.C. Zhou, J.B. Wang, Eur. J. Inorg. Chem., 24, 3825 (2012).

[5] H. Xia, M. Lai, L. Lu, J. Mater. Chem., 20, 6896 (2010).

[6] S.-H. Lee, Y.-H. Kim, R. Deshpande, P.A. Parilla, E. Whitney, D.T. Gillaspie, K.M. Jones, A.H. Mahan, S. Zhang, A.C. Dillon, Adv. Mater., 20, 3627 (2008).

[7] Y.-M. Lin, P.R. Abel, A. Heller, C.B. Mullins, J. Phys. Chem. Lett., 22, 2885 (2011).

[8] Z. Xiao, Y. Xi, Z. Ren, Z. Liu, G. Xu, C. Chao, X. Li, G. Shen, G. Han, J. Mater. Chem., 22, 20566 (2012).

[9] D. Su, H.-J. Ahn, G. Wang, J. Power Sources, 244, 742 (2013).

[10] S. Wang, J. Zhang, C. Chen, J. Power Sources, 195, 5379 (2010).

[11] Z.M. Cui, L.Y. Jiang, W.G. Song, Y.G. Guo, Chem. Mater., 21, 1162 (2009).

[12] X. Zhu, W. Wu, Z. Liu, L. Li, J. Hu, H. Dai, L. Ding, K. Zhou, Ch. Wang, X. Song, Electrochim. Acta, 95, 24 (2013).

[13] W.-M. Zhang, X.-L. Wu, J.-S. Hu, Y.-G. Guo, L.-J. Wan, Adv. Funct. Mater., 18, 3941 (2008).

[14] L. Taberna, S. Mitra, P. Poizot, P. Simon, J.M. Tarascon, Nat. Mat., 5, 567 (2006).

[15] J.Z. Wang, C. Zhong, D. Wexler, N.H. Idris, Z.X. Wang, L.Q. Chen, H.K. Liu, Chem. Eur. J., 17, 661 (2011).

[16] H. Duan, J. Gnanaraj, X. Chen, B. Li, J. Liang, J. Power Sources, 185, 512 (2008).

[17] S.K. Behera, J. Power Sources, 196, 8669 (2011).

[18] J.S. Chen, Y.M. Zhang, X.W. Lou, ACS Appl. Mater., Interfaces 3, 3276 (2011).

[19] Q.Q. Xiong, Y. Lu, X.L. Wang, C.D. Gu, Y.Q. Qiao, J.P. Tu, J. Alloy. Compd., 536, 219 (2012).

[20] S. Yuan, Z. Zhou, G. Li, Cryst. Eng. Comm., 13, 4709 (2011).

[21] X. Huang, X. Zhou, K. Qian, D. Zhao, Z. Liu, Ch. Yu, J. Alloy. Compd., 514, 76 (2012).

[22] Y. Ch. Dong, R.G. Ma, M.J. Hu, H. Cheng, Ch.K. Tsang, Q.D. Yang, Y.Y. Li, J.A. Zapien, J. Solid State Chem., 201, 330 (2013).

[23] G. Zhou, D.-W. Wang, F. Li, L. Zhang, N. Li, Z.-S. Wu, L. Wen, G.Q. Lu, H.-M. Cheng, Chem. Mater., 22, 5306 (2010).

[24] M. Sathish, T. Tomai, I. Honma, J. Power Sources, 217, 85 (2012).

[25] N. Zhao, S. Wu, Ch. He, Z. Wang, Ch. Shi, E. Liu, J. Li, Carbon, 57, 130 (2013).

[26] J. Liu, J. Ni, Y. Zhao, H. Wang, L. Gao, J. Mater. Chem. A, 1, 12879 (2013).

[27] P. Wu, N. du, H. Zhang, J. Yu, D. Yang, J. Phys. Chem. C, 115, 3612 (2011).

[28] C. Ban, Z. Wu, D.T. Gillaspie, L. Chen, F. Yan, J.L. Blackburn, A.C. Dillon, Adv. Mater., 22, E145 (2010).