Carbon Supported Au-Pd-PdO with Low Metal Loading for Electro-oxidation of Methanol in Alkaline Medium

Carbon Supported Au-Pd-PdO with Low Metal Loading for Electro-oxidation of Methanol in Alkaline Medium

V-H Ramos-Sánchez Diana Brito-Picciotto Ramón Gómez-Vargas David Chávez-Flores Edgar Valenzuela*

Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Nuevo Campus Universitario, Circuito Universitario, Chihuahua, Chih., México. C.P. 31125

Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán, A.C., Calle 43 #130, Col. Chuburná de Hidalgo, Mérida Yuc., México. C.P. 97200

Energías Renovables y Protección del Medio Ambiente, Centro de Investigación en Materiales Avanzados,S.C., Miguel de Cervantes #120, Complejo Industrial Chihuahua, Chihuahua, Chih., México. C.P. 31109

Facultad de Ingeniería, Universidad Autónoma de Baja California,Campus Mexicali, Boulevard Benito Juárez S/N, Mexicali, B. C., México. C.P. 21900

Corresponding Author Email: 
evalenzuela.mondaca@uabc.edu.mx
Page: 
133-138
|
DOI: 
https://doi.org/10.14447/jnmes.v17i3.401
Received: 
March 20, 2014
| |
Accepted: 
August 15, 2014
| | Citation
Abstract: 

The present work examined two Pd-based alloys supported on carbon: AuPd and Au2Pd, both synthesized by chemical reduction with NaBH4. The low Au-Pd loading electrocatalysts were physicochemically and electrochemically characterized. Electrocatalytic activity for methanol oxidation was found exclusively in AuPd/C. However, it was revealed that such reaction was promoted by PdO occurring in the actual active phase of the supported electrocatalyst, through the formation of Au-Pd-PdO ensemble sites.

Keywords: 

Au-Pd nanoparticles, bimetallic alloy, alkaline direct alcohol fuel cell, methanol electro-oxidation.

1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
5. Acknowledgements

This research was funded by the Public Education Ministry (SEP, México) through the PROMEP program under the grant PROMEP/103.5/12/3923.

  References

[1] F. Bidault, Journal of Power Sources, 187, 39 (2009).

[2] A.V. Tripković, Electrochimica Acta, 47, 3707 (2002).

[3] E. Antolini, E.R. Gonzalez, Journal of Power Sources, 195, 3431 (2010).

[4] C. Xu, Electrochemistry Communications, 9, 997 (2007).

[5] J. Zhang, Science, 315, 220 (2007).

[6] F. Gao, D.W. Goodman, Chemical Society Reviews, 41, 8009 (2012).

[7] U.S. Geological Survey, Report 2012, 204 (2013), http://pubs.usgs.gov/sir/2012/5188.

[8] S.Y. Park, Current Applied Physics, 10, S40 (2010).

[9] J.N. Zheng, Journal of Power Sources, 262, 270 (2014).

[10] X. Wang, Journal of Alloys and Compounds, 565, 120 (2013).

[11] A. Tompos, Combinatorial Chemistry & High Throughput Screening, 10, 71 (2007).

[12] W. Lin, Applied Catalysis B: Environmental, 50, 59 (2004).

[13] G. Groppi, Studies in Surface Science and Catalysis, E. Iglesia, Ed., Elsevier, Amsterdam, (2001), p. 345.

[14] K. Qian, W. Huang, Catalysis Today, 164, 320 (2011).

[15] N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, (1997), Butterworth-Heinemann, Oxford, UK.

[16] S.S. Mahapatra, J. Datta, International Journal of Electrochemistry, Article ID 563495 (2011).

[17] J. Zhang, Electrochimica Acta, 54, 1737 (2009).