Impedance Analysis of Growth and Morphology of Electropolymerized Polypyrrole Nanocomposites

Impedance Analysis of Growth and Morphology of Electropolymerized Polypyrrole Nanocomposites

Morteza Torabi M. Soltani S. K. Sadrnezhaad*

Materials and Energy Research Center, P.O. Box 14155-4777, Tehran, Iran

University of Waterloo, N2L 3G1,Waterloo, ON, Canada

KNT University of Technology , P.O. Box 15875-4416, Tehran, Iran

Johns Hopkins University, Baltimore, Maryland 21218, USA

Corresponding Author Email:
February 24, 2013
April 22, 2014
April 24, 2014
| Citation

Pure polypyrrole (PPy), PPy/Al2O3 and PPy/SiO2 nanocomposites synthesized galvanostatically using different polymerization charges. Electrochemical impedance measurements of pure polypyrrole revealed that the film thickness affected the impedance responses. The characteristic frequencies vs. film thickness that obtained using Cole-Cole plots showed that electrodeposition mechanism changed from 3D to 1D after nuclei overlapping for pure PPy. Analysis of the nanocomposites impedance spectrums revealed no changes during the film growth, i.e. deposition continues 3D even after nuclei overlapping. Scanning electron microscopy (SEM) confirmed the impedance results and showed that the morphology of the thick pure PPy film is 1D, while the deposition of the nanocomposites was 3D with compact and very fine structure.


Electrochemical impedance spectroscopy; Conducting polymers; Characteristic frequency; Nanocomposite; Cole-Cole plots

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion

[1] A.F. Diaz, K.K. Kanazawa, G.P. Gardini, J. Chem. Soc. Chem. Commun., 14, 635 (1979).

[2] K.K. Kanazawa, A.F. Diaz, B.H. Geiss, W.D. Gill, J.F. Kwark, J.A. Logan, J.F. Rabolt, G.B. Street, J. Chem. Soc. Chem. Commun., 19, 854 (1979).

[3] A. Watanabe, M. Tanaka, J. Bull. Chem. Soc. Jpn., 54, 2278 (1981).

[4] J.L. Bredas, R. Silbey, D.S. Boudreaux, R.R. Chance, J. Am. Chem. Soc., 105, 6555 (1983).

[5] A.F. Diaz, J.F. Rubinson, H.B. Mark, J. Adv. Polym. Sci., 84, 113 (1988).

[6] M. Kaneko, D. Wohrle, Adv. Polym. Sci., 84, 141 (1988).

[7] M.G. Kanatzidis, Chem. Eng. News, 68, 36 (1990).

[8] A. Techagumpuch, H.S. Nalwa, S. Miyata, in “Electroresponsive Molecular and Polymeric Systems”, Ed., T.A. Skotheim, Marcel Decker, New York, USA, 1991, p. 257.

[9] Germà Garcia-Belmonte, Electrochem. Commun., 5, 236 (2003).

[10] E.L. Kupila, J. Kankare, Synth. Met., 74, 241 (1995).

[11] P. Zhang, Z.H.Yang, D.J. Wang, S.H. Kan, X.D. Chai, J.Z. Liu, T.J. Li, Synth. Met., 84, 165 (1997).

[12] N. Cioffi, L. Torsi, L. Sabbatini, P.G. Zambonin, T.B. Zacheo, J. Electroanal. Chem., 488, 42 (2000).

[13] S. Sinharay, M. Biswas, Mater. Res. Bull., 34, 1187 (1999).

[14] K. Ramachandran, M.M. Lerner, J. Electrochem. Soc., 144, 3739 (1997).

[15] X. Ren, P.G. Pickup, J. Phys. Chem., 97, 5356 (1993).

[16] R.A. Bull, F.R.F. Fan, A.J. Bard, J. Electrochem. Soc., 129, 1009 (1982).

[17] G. Garcia-Belmonte, J. Bisquert, Electrochim. Acta, 47, 4263 (2002).

[18] X. Ren, G. Pickup, J. Phys. Chem., 97, 5356 (1993).

[19] Y.C. Liu, C.J. Tsai, J. Electroanal. Chem., 537, 165 (2002).