Effective Electro-Fenton Degradation of Reactive Black 5 Dye using Modified Electrode with Cu-Zeolites

Effective Electro-Fenton Degradation of Reactive Black 5 Dye using Modified Electrode with Cu-Zeolites

Miguel A. Oliver-Tolentino Elmer Jiménez-Álvarez María de Jesús Martínez-Ortiz Efrén García-Báez M.Olivia Franco-Hernández Ariel Guzmán-Varga*

Instituto Politécnico Nacional, ESIQIE, Departamento de Ingeniería Química - Laboratorio de Investigación en Materiales Porosos, Catálisis Ambiental y Química Fina, UPALM Edif.7 P.B. Zacatenco, GAM, México, D.F. 07738, México

2Instituto Politécnico Nacional, UPIBI, Departamento de Ciencias Básicas, Av. Acueducto s/n, Barrio La Laguna, Col. Ticomán, GAM, México, D.F. , 07340, México

Corresponding Author Email: 
aguzmanv@ipn.mx, otma_iq@hotmail.com
Page: 
071-075
|
DOI: 
https://doi.org/10.14447/jnmes.v17i2.426
Received: 
December 10, 2013
| |
Accepted: 
February 08, 2014
| | Citation
Abstract: 

The electrocatalytic production of hydroxyl radical (HO•) on the surface of zeolite modified electrode (ME) employing Cu-Zeolites (ZSM5 and β) with different theoretical ionic exchange (15 and 100%) was investigated (ME/Cu-Zeolites). The i-E characteristic of ME/Cu-ZSM-5 presented the faradic process associated to redox couple Cu2+/Cu+. On the other hand, voltammetric studies showed that in presence of H2O2, the cathodic peak current of ME/Cu-Zeolites increases followed by a decrease in the corresponding anodic current. This suggested that hydroxyl radical was produced by a cooperative effect of the acidic properties of zeolite and copper that acts as a redox mediator on the electrode surface via an electrocatalytic mechanism. Experiments of degradation using azo dye Reactive Black 5 as probe molecule exhibited that the concentration of azo dye decreased in the time, this confirms the formation of hydroxyl radical on the surface of modified electrode; kinetics parameters demonstrated that the ME/Cu- β with 15% of ionic exchange presented the highest catalytic activity.

Keywords: 

Hydroxyl radical, electrocatalysis, chemical oxygen demand, Cu-Zeolite, Reactive Black 5

1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusion
5. Acknowledgements

CONACYT 101319 and SIP-IPN 20140793 projects, for financial support.

  References

[1] J.P. Aguer, F. Blachere, P. Boule, S. Garaudee, C. Guillard, Int. J. Photoenergy 2, 81 (2000).

[2] D.E. Kritiros, N.P. Xerouroulotaris, E. Psillaris, D. Mantzavinos, Water. Res. 41, 2236 (2007).

[3] C. Galindo, P. Jacques, A. Kalt, Chemosphere, 45, 997 (2001).

[4] A. Chen, X. Ma, H. Sun, J. Hazard. Mater., 156, 586 (2008).

[5] M.B. Kasiri, H. Aleboyeh, A. Aleboyeh, App. Catal. B: Environ., 84, 9 (2008).

[6] A. Aleboyeh, H. Aleboyeh, Y. Moussa, Dyes Pigments, 57, 67 (2003).

[7] P.R. Gogate, A.B. Pandit, Adv. Environ. Res., 8, 553 (2004).

[8] F.I. Hai, K. Yamamoto, K. Fukushi, Crit. Rev. Env. Sci. Technol., 37, 315 (2007).

[9] C. Minero, M. Lucchiari, D. Vione, V. Maurino, Env. Sci. Technol., 39, 8936, (2005).

[10] E. Brillas, M.A. Baños, S. Camps, C. Arias, P. Ll. Cabot, J.A. Garrido, R.M. Rodíguez, New. J. Chem., 28, 314 (2004).

[11] I. Melián-Cabrera, F. Kapteijn, J.A. Moulijn, Catal. Today, 110, 255 (2005).

[12] R. Gonzalez-Olmos, M.J. Martin, A. Georgi, F.D. Kopinke, I. Oller, S. Malato, Appl. Catal. B: Environ., 125, 51 (2012).

[13] K. Maduna Valkaj, A. Katovic, S. Zrnčević, J. Hazard. Mater., 144, 663 (2007).

[14] R. Gonzalez-Olmos, U. Roland, H. Toufar, F.-D. Kopinke, A. Georgi, Appl. Catal. B: Environ., 89, 356 (2009).

[15] M.A. Oliver-Tolentino, A. Guzmán-Vargas, E.M. Arce-Estrada, D. Ramírez-Rosales, A. Manzo-Robledo, E. Lima, J. Electroanal. Chem., 692, 31, (2013).

[16] A. Guzmán-Vargas, M.A. Oliver-Tolentino, E. Lima, J. Flores-Moreno, Electrohim. Acta, 108, 583 (2013).

[17] A. Guzmán-Vargas, G. Delahay, B. Coq, Appl. Catal. B: Environ., 42, 369 (2003).

[18] X. Ma, M. Zhou, J. Chem. Technol. Biotechnol., 84, 1544 (2009).