Oxygen Reduction Reaction (ORR) on a Mixed Titanium and Tantalum Oxy-nitride Catalyst Prepared by the Urea-based Sol-gel Method

Oxygen Reduction Reaction (ORR) on a Mixed Titanium and Tantalum Oxy-nitride Catalyst Prepared by the Urea-based Sol-gel Method

A. Seifitokaldani
M. Perrier
O. Savadogo*

Chemical Engineering Department, Polytechnique Montréal, Montréal, CANADA

Laboratory of New Materials for Electrochemistry and Energy, Polytechnique Montréal, C.P.6079, Succursale Centre-Ville, Montréal, Québec H3C 3A7, Canada

Corresponding Author Email: 
osavadogo@polymtl.ca
Page: 
055-065
|
DOI: 
https://doi.org/10.14447/jnmes.v17i2.424
Received: 
February 11, 2014
|
Accepted: 
April 05, 2014
|
Published: 
May 09, 2014
| Citation
Abstract: 

The electrochemical stability and activity of different compositions of titanium and tantalum oxy-nitride nano-catalysts were investigated for the oxygen reduction reaction (ORR). A new sol-gel method was used to produce a nano-powder mixture of Ti and Ta oxynitride from their alkoxides using urea as a nitrogen source. The precursors prepared by the sol-gel method were annealed in a N2 + 3% H2 atmosphere at determined temperatures (500, 700 and 900 °C) inside a silica tube furnace. X-ray diffraction results proved that by using this method a considerable amount of nitrogen was inserted into the catalyst structure at a relatively low temperature. Energy dispersive spectroscopy showed that the prepared catalyst should be oxidized carbonitride of titanium and/or tantalum. Heat treatment had a major effect on the onset potential by changing the crystallinity of the catalyst, so that the onset potential of titanium oxynitride increased from ca. 0.05 V to 0.65 V vs. NHE by increasing the temperature from 500 to 700 °C. Increasing the Ta concentration also led to a higher onset potential but lower ORR current. For instance, the onset potential for the ORR for tantalum oxynitride heat treated at 700 °C was ca. 0.85 V vs. NHE while this value was ca. 0.65 V vs. NHE for titanium oxynitride. However, the ORR current was 100 times smaller in tantalum oxynitride, most likely because of a low electrochemically active surface area. Electrochemical measurements suggested that an appropriate composition of titanium and tantalum was required to have both a good onset potential and ORR current by improving the catalytic activity and increasing the active surface area and electrical conductivity.

Keywords: 

titanium and tantalum oxy-nitride, urea-based sol-gel, oxygen reduction reaction (ORR)

1. Introduction
2. Experimental Procedure
3. Results and Discussion
4. Conclusion
5. Acknowledgement

The author wishes to acknowledge the help of Jeff Lullo in commenting on an early draft of this article.

  References

[1] Bin Wang, J. Power Sources, 152, 1 (2005).

[2] Drew C. Higgins, Doralice Meza, Zhongwei Chen, The Journal of Physical Chemistry C, 114, 21982 (2010).

[3] Wei Xiong, Feng Du, Yong Liu, Albert Perez, Michael Supp, Terizhandur S. Ramakrishnan, Liming Dai, Li Jiang, J. Am. Chem. Soc., 132, 15839 (2010).

[4] A. Ishihara, Y. Shibata, S. Mitsushima, K. Ota, Journal of The Electrochemical Society, 155, B400 (2008).

[5] Yuyan Shao, Geping Yin, Yunzhi Gao, J. Power Sources, 171, 558 (2007).

[6] Deli Wang, Huolin L. Xin, Yingchao Yu, Hongsen Wang, Eric Rus, David A. Muller, Hector D. Abruña, J. Am. Chem. Soc., 132, 17664 (2010).

[7] Ke Zhang, Qiaoli Yue, Guifen Chen, Yanling Zhai, Lei Wang, Huaisheng Wang, Jinsheng Zhao, Jifeng Liu, Jianbo Jia, Haibo Li, The Journal of Physical Chemistry C, 115, 379 (2010).

[8] Yan Liu, Akimitsu Ishihara, Shigenori Mitsushima, Nobuyuki Kamiya, Ken-ichiro Ota, Journal of The Electrochemical Society, 154, B664 (2007).

[9] F. Fouda-Onana, S. Bah, O. Savadogo, Journal of Electroanalytical Chemistry, 636, 1 (2009).

[10] Akimitsu Ishihara, Motoko Tamura, Koichi Matsuzawa, Shigenori Mitsushima, Ken-ichiro Ota, Electrochimica Acta, 55, 7581 (2010).

[11] Takako Toda, Hiroshi Igarashi, Masahiro Watanabe, Journal of Electroanalytical Chemistry, 460, 258 (1999).

[12] Yongfu Tang, Huamin Zhang, Hexiang Zhong, Ting Xu, Hong Jin, J. Power Sources, In Press, Corrected Proof, (2011).

[13] Hui Yang, Walter Vogel, Claude Lamy, Nicolás Alonso-Vante, The Journal of Physical Chemistry B, 108, 11024 (2004).

[14] Vojislav R. Stamenkovic, Ben Fowler, Bongjin Simon Mun, Guofeng Wang, Philip N. Ross, Christopher A. Lucas, Nenad M. Marković, Science, 315, 493 (2007).

[15] Shuo Chen, Paulo J. Ferreira, Wenchao Sheng, Naoaki Yabuuchi, Lawrence F. Allard, Yang Shao-Horn, J. Am. Chem. Soc., 130, 13818 (2008).

[16] Juan Zhao, Arumugam Manthiram, Journal of The Electrochemical Society, 158, B208 (2011).

[17] V. Stamenković, T.J. Schmidt, P.N. Ross, N.M. Marković, The Journal of Physical Chemistry B, 106, 11970 (2002).

[18] Sanjeev Mukerjee, Supramaniam Srinivasan, Journal of Electroanalytical Chemistry, 357, 201 (1993).

[19] Huimin Wu, David Wexler, Huakun Liu, O. Savadogo, Jungho Ahn, Guoxiu Wang, Mater. Chem. Phys., 124, 841 (2010).

[20] Guoxiu Wang, Huimin Wu, David Wexler, Huakun Liu, Oumarou Savadogo, J. Alloy. Compd., 503, L1 (2010).

[21] G. Selvarani, S. Maheswari, P. Sridhar, S. Pitchumani, A. K. Shukla, Journal of Fuel Cell Science and Technology, 8, 021003 (2011).

[22] Ken-ichiro Ota, Yoshiro Ohgi, Kyung-Don Nam, Koichi Matsuzawa, Shigenori Mitsushima, Akimitsu Ishihara, J. Power Sources, 196, 5256 (2011).

[23] S. Venkataraj, D. Severin, S.H. Mohamed, J. Ngaruiya, O. Kappertz, M. Wuttig, Thin Solid Films, 502, 228 (2006).

[24] Akimitsu Ishihara, Shotaro Doi, Shigenori Mitsushima, Kenichiro Ota, Electrochimica Acta, 53, 5442 (2008).

[25] Shotaro Doi, Akimitsu Ishihara, Shigenori Mitsushima, Nobuyuki Kamiya, Ken-ichiro Ota, Journal of The Electrochemical Society, 154, B362 (2007).

[26] Akimitsu Ishihara, Kunchan Lee, Shotaro Doi, Shigenori Mitsushima, Nobuyuki Kamiya, Michikazu Hara, Kazunari Domen, Kenzo Fukuda, Ken-ichiro Ota, Electrochemical and Solid-State Letters, 8, A201 (2005).

[27] Youta Maekawa, Akimitsu Ishihara, Jin-Hwan Kim, Shigenori Mitsushima, Ken-ichiro Ota, Electrochemical and Solid-State Letters, 11, B109 (2008).

[28] Kyung Don Nam, Akimitsu Ishihara, Koichi Matsuzawa, Shigenori Mitsushima, Ken-ichiro Ota, Electrochemical and Solid-State Letters, 12, B158 (2009).

[29] Kunchan Lee, Akimitsu Ishihara, Shigenori Mitsushima, Nobuyuki Kamiya, Ken-ichiro Ota, Electrochimica Acta, 49, 3479 (2004).

[30] Yan Liu, Akimitsu Ishihara, Shigenori Mitsushima, Nobuyuki Kamiya, Ken-ichiro Ota, Electrochemical and Solid-State Letters, 8, A400 (2005).

[31] Yan Liu, Akimitsu Ishihara, Shigenori Mitsushima, Kenichiro Ota, Electrochimica Acta, 55, 1239 (2010).

[32] Jin-Hwan Kim, Akimitsu Ishihara, Shigenori Mitsushima, Nobuyuki Kamiya, Ken-Ichiro Ota, Electrochimica Acta, 52, 2492 (2007).

[33] Akimitsu Ishihara, Yoshiro Ohgi, Koichi Matsuzawa, Shigenori Mitsushima, Ken-ichiro Ota, Electrochimica Acta, 55, 8005 (2010).

[34] Shuya Kawahara, Shigenori Mitsushima, Kenichiro Ota, and Nobuyuki Kamiya, ECS Transaction, 3, 619 (2006).

[35] Wang-Jae Chun, Akio Ishikawa, Hideki Fujisawa, Tsuyoshi Takata, Junko N. Kondo, Michikazu Hara, Maki Kawai, Yasumichi Matsumoto, Kazunari Domen, The Journal of Physical Chemistry B, 107, 1798 (2003).

[36] A. Ishihara J.-H. Kim, S. Mitsushima, N. Kamiya and K. Ota, Chem. Lett., 36, 514 (2007).

[37] Jin-Hwan Kim, Akimitsu Ishihara, Shigenori Mitsushima, Nobuyuki Kamiya, Ken-ichiro Ota, Electrochemistry, 75, 166 (2007).

[38] Shiro Shimada, Solid State Ionics, 141, 99 (2001).

[39] Shiro Shimada, Mats Johnsson, Sigita Urbonaite, Thermochimica Acta, 419, 143 (2004).

[40] Akimitsu Ishihara, Motoko Tamura, Koichi Matsuzawa, Shigenori Mitsushima, Ken-ichiro Ota, Journal of Fuel Cell Science and Technology, 8, 1005 (2011).

[41] Yohei Shibata, Akimitsu Ishihara, Shigenori Mitsushima, Nobuyuki Kamiya, Ken-ichiro Ota, Electrochemical and Solid-State Letters, 10, B43 (2007).

[42] Akimitsu Ishihara Yoshiro Ohgi, Yohei Shibata, Shigenori Mitsushima and Ken-ichiro Ota, Chemistry Letters, 37, 608 (2008).

[43] Gang Liu, Hua Min Zhang, Mei Ri Wang, He Xiang Zhong, Jian Chen, J. Power Sources, 172, 503 (2007).