Synthesis of Medium-temperature Protonic Conductor CsHSO4-Al2O3

Synthesis of Medium-temperature Protonic Conductor CsHSO4-Al2O3

L.B. Yang W.S. Ning X.D. Wang W. Liu H.Y. ShenY.X. Huang K.Y. Shu 

College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, China

State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, China

Corresponding Author Email: 
shenhangyan@cjlu.edu.cn
Page: 
273-278
|
DOI: 
https://doi.org/10.14447/jnmes.v16i4.153
Received: 
2 July 2013
|
Accepted: 
15 July 2013
|
Published: 
18 September 2013
| Citation
Abstract: 

In this study, different methods are used to synthesize novel medium-temperature protonic conductors from CsHSO4 and mesoporous Al2O3. X-ray diffraction, scanning electron microscopy, thermogravimetric analysis and differential scanning calorimetry, and nitrogen adsorption-desorption isotherms are performed to investigate the structures and properties of CsHSO4-Al2O3 conductors. Results show that the proton conductivities of the prepared CsHSO4-Al2O3 conductors increase as temperature increases from 100 °C to 200 °C. The optimum method involves mixing the equimolar CsHSO4 and Al2O3 with 5 ml ethanol and subsequently ball milling at a rotating speed of 200 rpm for 2 h. The highest proton conductivity obtained in this study is 1.06×10-6 S·cm–1 at 200 °C.

Keywords: 

Composite; Proton conductivity; Proton carrier

1. Introduction
2. Experiment
3. Results and Discussion
4. Conclusions
5. Acknowledgements
  References

[1] Y. Abe, M. Hayashi, T. Iwamoto, H. Sumi, L.L. Hench, J. Non- Cryst. Solids, 351, 2138 (2005).

[2] H. Li, M. Nogami, Adv. Mater., 14, 912 (2002).

[3] X.L. Chen, C.S. Wang, E.A. Payzant, C.R. Xia, D. Chu. J. Electrochem. Soc., 155, 1264 (2008).

[4]C. Yang, S. Srinivasan, A.B. Bocarsly, S. Tulyani, J.B. Ben- ziger, J. Membr. Sci., 237, 145 (2004).

[5] H.Y. Chang, C.W. Lin, J. Membr. Sci., 218, 295 (2003).

[6] O. Savadogo, J. New Mater. Electrochem. Syst., 1, 47 (1998).

[7] O. Savadogo, J. Power Sources, 127, 135 (2004).

[8] M. Nogami, Y. Usui, T. Kasuga, Fuel Cells, 3, 181 (2001).

[9] R. Marschall, I. Bannat, J. Caro, M. Wark, Microporous Mesoporous Mater., 99, 190 (2007).

[10] S.M. Haile, D.A. Boysen, C.R.I. Chisholm, R.B. Merle, Na- ture, 410, 910 (2001).

[11] S.Q. Wang, J. Otomo, M. Ogura, Q. Wen, H. Nagamoto, H. Takahashi, Solid State Ionics, 176, 755 (2005).

[12] H.Y. Shen, H. Maekawa, J. Kawamura, T. Yamamura, Solid State Ionics, 177, 2403 (2006).

[13] H.Y. Shen, H. Maekawa, J. Kawamura, Y. Matsumoto, T. Ya- mamura, Y. Kawakita, K. Shibata, M. Kawai, Solid State Ion- ics, 179, 1133 (2008).

[14] H.Y. Shen, H. Maekawa, L. Wang, B. Guo, K.Y. Shu, Electro- chem. Solid-State Lett., 12, B18 (2009).

[15] H.Y. Shen, B. Guo, H. Maekawa, J.Y. Guo, K.Y. Shu, Solid State Ionics, 192, 105 (2011).

[16] X.D. Wang, L.B. Yang, J.B. Liu, Y.X. Huang, H.Y. Shen, K.Y. Shu, Adv. Mater. Res., 472, 2819 (2012).

[17] H. Maekawa, R. Tanaka, T. Sato, Y. Fujimaki, T. Yamamura, Solid State Ionics, 175, 281 (2004).

[18] E. Ortiz, R.A. Vargas, B-E. Mellander, J. Phys. Condens. Mat- ter, 18, 9561 (2006).

[19] M.T. Colomer, M.A. Anderson. J. Non-Cryst. Solids, 290, 93 (2001).