Synthesis of Unsupported Pt-based Electrocatalysts and Evaluation of Their Catalytic Activity for the Ethylene Glycol Oxidation Reaction

Synthesis of Unsupported Pt-based Electrocatalysts and Evaluation of Their Catalytic Activity for the Ethylene Glycol Oxidation Reaction

A.F. Chávez Villanueva Adriana M. Ramirez G. Vargas Gutiérrez L.A. Torres F.J. Rodríguez Varela

Universidad de la Ciénega de Michoacán de Ocampo, Avenida Universidad 3000, Sahuayo, Michoacán, México, CP 59000

CINVESTAV Unidad Saltillo, Carr. Saltillo-Monterrey km. 13.5, Ramos Arizpe, Coahuila, CP 25900

Corresponding Author Email:
10 December 2012
| |
11 February 2013
| | Citation

In this work, unsupported Pt, Pt-Ru (1:1 wt. % Pt:Ru ratio) and Pt-CeO2 (1:1 wt. % Pt:CeO2 ratio) electrocatalysts were syn- thesized and evaluated as anodes for the ethylene glycol oxidation reaction (EGOR) in out in H2SO4 electrolyte. The nanomaterials were prepared by slowly dropping the precursors in a NaBH4 solution, in a reduction process of 10 min. Analysis by XRD showed the formation of polycrystalline electrocatalysts, while the chemical composition characterization indicated a ratio between the different elements in the bimetallic materials close to the stoichiometric value. Selected area electron diffraction patterns evaluation carried out in the TEM appa- ratus helped in the identification of Pt (1 1 1) in the three anodes, Ru (1 0 0) in Pt-Ru, and CeO2 (1 1 1) in Pt-CeO2, confirming the forma- tion of Ru and CeO2 phases. The results from the electrochemical characterization by Linear Scan Voltammetry (LSV) showed that the Pt- Ru material possess a higher mass catalytic activity for the EGOR, followed Pt-CeO2, compared to Pt-alone. The nano-sized Pt-Ru and Pt- CeO2 anodes demonstrated a high electrochemical stability in accelerated potential cycling tests, with very low surface area losses in the hydrogen adsorption/desorption region after 500 polarization cycles. The results indicated that the bimetallic electrocatalysts are candi- date anodes for Direct Ethylene Glycol Fuel Cells.


Pt-Ru, Pt-CeO2, nano-sized electrocatalysts, ethylene glycol oxidation reaction, Direct Ethylene Glycol Fuel Cells.

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
5. Acknowledgements

[1] S. Alayoglu, A.U. Nilekar, M. Mavrikakis, B. Eichhorn, Nature Materials, 7, 333 (2008).

[2] E.A. Baranova, T. Amir, P.H.J. Mercier, B. Patarachao, D. Wang, Y. Le Page, J. Appl. Electrochem., 40, 1767 (2010).

[3] E. Antolini, J. Power Sources, 170, 1 (2007).

[4] E. Antolini, E.R. Gonzalez, J. Power Sources, 195, 3431 (2010).

[5] A. Serov, C. Kwak, Appl. Catal. B: Environ., 97, 1 (2010).

[6] K. Matsuoka, Y. Iriyama, T. Abe, M. Matsuoka, Z. Ogumi, J. Power Sources, 150, 27 (2005)

[7] A.S. Aricòa, S. Srinivasan, V. Antonucci, Fuel Cells, 1, 133 (2001).

[8] W.H. Lizcano-Valbuena, A. de Souza, V.A. Paganin, C.A.P. Leite, F. Galembeck, E.R. Gonzalez, Fuel Cells, 2, 159 (2002).

[9] M. Neergat, D. Leveratto, U. Stimming, Fuel Cells, 2, 25 (2002).

[10] F. Vigier, C. Coutanceau, A. Perrard, E.M. Belgsir, C. Lamy, J. Appl. Electrochem., 34, 439, (2004).

[11] C. Lamy, S. Rousseau, E.M. Belgsir, C. Coutanceau, J.-M. Léger, Electrochim. Acta, 49, 3901 (2004).

[12] C. Lamy, E.M. Belgsir, J.-M. Léger, J. Appl. Electrochem., 31, 799, (2001).

[13] P.E. Tsiakaras, J. Power Sources, 171, 102 (2007).

[14] M. Zhu, G. Sun, Q. Xin, Electrochim. Acta, 54, 1511 (2009). 

[15] N.M. Sánchez-Padilla, S.M. Montemayor, L.A. Torres, F.J. Rodríguez Varela, Int. J. Hydrogen Energy, DOI: 10.1016/j.ij hydene.2012.11.026.

[16] V. Livshits, A. Philosoph, E. Peled, J. Power Sources, 178, 687 (2008).

[17] U.B. Demirci, Environ. Int., 35, 626 (2009).

[18] R.B. De Lima, V. Paganin, T. Iwasita, W. Vielstich, Electro- chim. Acta, 49, 85 (2003).

[19] V. Selvaraj, M. Vinoba, M. Alagar, J. Colloid Interface Sci., 322, 537 (2008).

[20] Y. Zhao, F. Wang, J. Tian, X. Yang, Lu Zhan, Electrochim. Acta, 55, 8998 (2010).

[21] M.A. Scibioh, S.-K. Kim, E.A. Cho, T.-H. Lim, S.-A. Hong, H.Y. Ha, Appl. Catal. B: Environm., 84, 773 (2008).

[22] Y. Zhou, Y. Gao, Y. Liu, J. Liu, J. Power Sources, 195, 1605 (2010).

[23] D.-J. Guo, Z.-H. Jing, J. Power Sources, 195, 3802 (2010). 

[24] R.F.B. De Souza, A.E.A. Flausino, D.C. Rascio, R.T.S. Oliveira, E. Teixeira Neto, M.L. Calegaro, M.C. Santos, Appl. Catal. B: Environm., 91, 516 (2009).

[25] J. Wang, J. Xi, Y. Bai, Y. Shen, J. Sun, L. Chen, W. Zhu, X. Qiu, J. Power Sources, 164, 555 (2007).

[26] Nora Mayté Sánchez-Padilla, Sagrario M. Montemayor, F.J. Rodríguez Varela, J. New Mat. Electrochem. Systems, 15, 171 (2012).

[27] F.J. Rodriguez Varela, A.A. Gaona Coronado, J.C. Loyola, Qi- Zhong Jiang, P. Bartolo Perez, J. New Mat. Electrochem. Sys- tems, 14, 75 (2011).

[28]  T. Masuda, H. Fukumitsu, K. Fugane, H. Togasaki, D. Matsu- mura, K. Tamura, Y. Nishihata, H. Yoshikawa, K. Kobayashi, T. Mori, K. Uosaki K, J. Phys. Chem. C, 116, 10098 (2012). 

[29] A.   Altamirano-Gutiérrez,   A.M.   Fernández, F.J. Rodríguez Varela, Int. J. Hydrogen Energy, DOI: 6/j.ijhydene.2012.12.140.

[30] K. Fugane, T. Mori, D.R. Ou, A. Suzuki, H. Yoshikawa, T. Masuda, K. Uosaki, Y. Yamashita, S. Ueda, K. Kobayashi, N. Okazaki, I. Matolinova and V. Matolin, Electrochim. Acta, 56, 3874 (2011).

[31] V. Livshits and E. Peled, J. Power Sources, 161, 1187 (2006). 

[32] R. Chetty and K. Scott, J. Appl. Electrochem., 37, 1077 (2007).