Preformance of an Electrobiochemical Slurry Reactor for the Treatment of a Soil Contaminated with Lindane

Preformance of an Electrobiochemical Slurry Reactor for the Treatment of a Soil Contaminated with Lindane

Beni Camacho-Pérez Elvira Ríos-Leal Omar Solorza-Feria Pedro Alberto Vazquez-Landaverde Josefina Barrera-Cortés María Teresa Ponce-Noyola Jaime Garcia-Mena Noemi Rinderknecht-Seijas Héctor Mario Poggi-Varaldo*

CINVESTAV del IPN, Department of Biotechnology and Bioengineering, Environmental Biotechnology and Renewable Energies R&D Group, P.O. Box 14-740, 07000 México D.F., México

CINVESTAV del IPN, Department of Biotechnology and Bioengineering, Central Analítica, México D.F., México

CINVESTAV del IPN, Department of Chemistry, CINVESTAV del IPN, México D.F., México

CICATA-IPN Unidad Querétaro, Querétaro, Qro, México

CINVESTAV del IPN, Department of Biotechnology and Bioengineering, Control inteligente de Procesos, México D.F., México

CINVESTAV del IPN, Department of Biotechnology and Bioengineering, Microbial Genetics Group, Mexico D.F., Mexico

CINVESTAV del IPN, Department of Genetic, México D.F., México

ESIQIE del IPN, Mexico D.F., México

Corresponding Author Email: 
hectorpoggi2001@gmail.com
Page: 
217-228
|
DOI: 
https://doi.org/10.14447/jnmes.v16i3.21
Received: 
10 November 2012
| |
Accepted: 
29 January 2013
| | Citation
Abstract: 

The purpose of this research was to evaluate the biodegradation of lindane with simultaneous electricity generation in an elec- trobiochemical slurry reactor (EBCR). The EBCR was inoculated with a sulfate reducing inoculum acclimated to lindane, further charac- terized, and batch operated for 30 day at room temperature. No external carbon source and supplementation with a stock solution of su- crose: sodium acetate: lactate was performed in experiments with soil concentrations 66% and 33%, respectively. Electrochemical imped- ance characterization of the EBCR (concentration of soil was 66%) showed that the equivalent circuit had a high anodic resistance R1=2064Ω, cathodic resistance R3 = 192 Ω; and electrolyte/membrane resistance R2 = 7Ω, totaling a high overall internal resistance Rint of 2263 Ù. During the batch operation, the EBCR showed a 30% lindane removal efficiency along with a maximum volumetric power of 165 mW m-3. The organic matter removal was very high (72% as soluble COD, NOM) whereas the coulombic efficiency was low (5.4%). In the experiment where the concentration of soil was 66% both cell characteristics and performance significantly improved. The internal resistance as determined by polarization curve was 102 Ω when the two-electrode sets were connected in parallel. During the batch opera- tion, the EBCR showed a 78% lindane removal, a maximum power of 634 mW m-3, the organic matter removal was 76%, and coulombic efficiency of 15%. Therefore, it can be concluded that the EBCR exhibited a high lindane removal capability and holds promise for biore- mediation of soils with the bonus of electricity generation.

Keywords: 

Electrobiochemical slurry reactor, lindane, soil remediation, sulphate reducing

1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusion
5. Acknowledgements
  References

[1] L.M. García-de la Parra, L.J. Cervantes-Mojica, C. González- Valdivia, F.J. Martínez-Cordero, G. Aguilar-Zárate, P. Basti- das-Bastidas, M. Betancourt-Lozano, M. Arch. Environ. Con. Tox., DOI: 10.1007/s00244-012-9780-5. (2012).

[2] M.D. Gil-Diaz, A. Perez-Sanz, M. Martin, M.C. Lobo, J. Agr, Food Chem., 59, 10635 (2011).

[3] C. Garibay-Orijel, E. Ríos-Leal, J.García-Mena, H.M. Poggi- Varaldo, J. Chem. Technol. Biotechnol., 80, 1180 (2005).

[4] V. Pardío, D. Martínez, A. Flores, D. Romero, V. Suárez, K. López, R. Uscanga. Food Chem., 135, 1873 (2012).

[5] S. Sang, S. Petrovic, V. Cuddeford. World Wildlife Fund Can- ada, Toronto, ON, Canada, 1999.

[6] J. Vijgen, International HCH and Pesticides Association, http://www.cluin.org/download/misc/Lindan_Main_Report_DE F20JAN06.pdf., Holte, Denmark, 2006.

[7] P. Pinilla, J. Ruiz, M.C. Lobo, M.J. Martínez-Iñigo, Bioresour. Technol., 99, 2177 (2008).

[8] Instituto Nacional de Ecología (INE). Secretaría de Medio Am- biente y Recursos Naturales., http://www.ine.gob.mx. (2004).

[9] Secretariat of the Stockholm Convention, Publishing Service, United Nations, GE.12-00507 UNEP/SC/2012/1, Geneva, 2012.

[10] B. Camacho-Pérez, E. Ríos-Leal, N. Rinderknecht-Seija, H.M. Poggi-Varaldo, J. Environ. Manage., 95, S306 (2012).

[11] Y. Nagata, T. Hatta, R. Imai, K.Kimbara, M. Fukuda, K. Yano, M.Takagi, Biosci. Biotechnol. Biochem., 57, 1582 (1993). 

[12] Y. Nagata, T. Nariya, R. Ohtomo, M. Fukuda, K. Yano, M. Takagi, J. Bacteriol., 175, 6403 (1993).

[13] J.C. Quintero, M.T. Moreira, G. Feijoo, J.M. Lema, Chemos- phere, 61, 528 (2005).

[14] J.E. Haugen, F. Wania, N. Ritter, M. Schlabach, Environ. Sci. Technol., 32, 217 (1998).

[15] R.D. Wauchope, S. Yeh, J.B. Linders, R. Kloskowski, K. Ta- naka, B. Rubin, A. Katayama, W. Kördel, Z. Gerstl, M. Lane, J.B. Unsworth, Pest. Manag. Sci., 58, 419 (2002).

[16] P.C. Abhilash, & N. Singh, Environ. Sci. Pollut. Res., 16, 727 (2009).

[17] J. Vijgen, P.C. Abhilash, Y.F. Li, R. Lal, Environ. Sci. Pollut. Res. Int., 18, 152, (2011).

[18] R. Weber, C. Gaus, M. Tysklind, P. Johnston, M. Forter, H. Hollert, H. Heinisch, I. Holoubek, M. Lloyd-Smith, S. Masu- naga, P. Moccarelli, D. Santillo, N. Seike, R. Symons, J.P.M. Torres, M. Verta, G. Varbelow, J. Vijgen, A. Watson, P. Cost- ner, J. Woelz, P. Wycisk, M. Zennegg, Environ. Sci. Pollut. Res., 15, 363 (2008).

[19] J. Ramos, A. Gavilán, T. Romero, I. Ize, Environ. Sci. Policy, 14, 503 (2011).

[20] W.E. Varo-Arguello, B. Camacho-Pérez, E. Ríos-Leal, P.A. Vázquez-Landaverde, M.T. Ponce-Noyola, J. Barrera-Cortés, I. Sastre-Conde, N.F. Rindernknecht-Seijas, H.M. Poggi-Varaldo, H.M. Submitted to Environ. Eng. Manage. J., (2012).

[21] J.C. Quintero, T.A. Lú-Chau, M.T. Moreira, G. Feijoo, J. M. Lema, Int. Biodeter. Biodegr., 60, 319 (2007).

[22] I.V. Robles-González, E. Ríos-Leal, I. Sastre-Conde, F. Fava, N.Rinderknecht-Seijas, H.M. Poggi-Varaldo, Biochemistry, in process (2011).

[23] B. Chávez-Gómez, R. Quintero, F. Esparza-Garcı́a, A.M. Mesta-Howard, F.J. Zavala Dı́az de la Serna, C.H. Hernández- Rodrı́guez, T. Gillén, H.M. Poggi-Varaldo, J. Barrera-Cortés, R.Rodrı́guez-Vázquez, (2003). Bioresource Technology, 89, 177 (2003).

[24] R. Boopathy, Bioresource Technol., 74, 63 (2000).

[25] I. Sastre-Conde, J.G. Cabezas, A. Guerrero, M.A. Vicente, M.C. Lobo, M.C. Sci Total Environ., 378, 205 (2007).

[26] I.V. Robles-González, F. Fava, H.M. Poggi-Varaldo, Microb. Cell Fac., 7, 5 (2008).

[27] L. Ruberto, R. Dias, A. Lo Balbo, S.C. Vazquez, E.A. Hernandez, W.P. Mac Cormack, J. Appl. Microbiol., 106, 1101 (2009).

[28] I. Valdez-Vazquez, E. Rıos-Leal, K.M. Muñoz-Paez, A. Carmona-Martınez, H.M. Poggi-Varaldo, Biotechnol. Bioeng., 95, 342 (2006).

[29] H.M. Poggi-Varaldo, J. Trejo-Espino, G. Fernandez- Villagomez, F. Esparza-Garcia, S. Caffarel-Mkndez, N. Rinderknecht-Seijas, N., War. Sci. Tech. 40, 179 (1999).

[30] Z. Du, H. Li, T. Gu, Biotech. Adv., 25, 464 (2007).

[31] H. Liu, R. Ramnarayanan, B.E. Logan, Environ. Sci. Technol., 38, 2281 (2004).

[32] B.E. Logan, B. Hamelers, R. Rozendal, U. Schroder, J. Keller, S.Freguia, P. Aelterman, W. Verstraete, K. Rabaey, Environ. Sci. Technol., 40, 5181 (2006).

[33] J.M. Morris, S. Jin, J. Environ. Sci. Health, B43, 18 (2008). 

[34] A. Ortega-Martínez, K. Juárez-López, O. Solorza-Feria, M.T. Ponce-Noyola, E. Ríos-Leal, N.F. Rinderknecht-Seijas, H. M. Poggi-Varaldo, J. New Mat. Electrochem. Systems, 15, 187 (2012).

[35] D. Pant, G. Van Bogaert, L. Diels, K. Vanbroekhoven, Bioresource Technol., 101, 1533 (2010).

[36] H.M. Poggi-Varaldo, A. Carmona Martínez, A.L. Vázquez- Larios and O. Solorza-Feria, J. New Mat. Electrochem. Systems, 12, 49 (2009).

[37] F. Rezaei, T.L. Richard, B.E. Logan, J. Power Sources, 192, 304 (2009).

[38] K. Sathish-Kumar, O. Solorza-Feria, R. Hernández-Vera, G. Vazquez-Huerta, H.M. Poggi-Varaldo, J. New Mat. Electrochem. Systems, 15, 195 (2012).

[39] A .L. Vázquez-Larios, O. Solorza-Feria, G. Vazquez-Huerta, F. Esparza-Garcia, E. Rios-Leal, N. Rinderknecht-Seijas, H.M. Poggi-Varaldo, J. New Mat. Electrochem. Systems, 13, 219 (2010).

[40] A.L. Vázquez-Larios, O. Solorza-Feria, G. Vazquez-Huerta, E. Rios-Leal, N. Rinderknecht-Seijas, H.M. Poggi-Varaldo, J. New Mat. Electrochem. Systems, 14, 99 (2011).

[41] Camacho-Pérez, B. Biorrestauración de suelos agrícolas contaminados con agroquímicos utilizando reactores de suelos activados convencionales y electrobioquímico de nuevo tipo. Bioremediation of agricultural soils polluted with lindane using slurry bioreactors and a novel bioelectrochemical reactor. Sc D Thesis, Interim Report. CINVESTAV del IPN, México D.F., México, 2012.

[42] D. Huang, S. Zhou, Q. Chen, B. Zhao, Y. Yuan, L. Zhouang, Chem. Eng. J., 172, 647 (2011).

[43] X. Wang, Z. Cai, Q. Zhou, Z. Zhang, C. Chen, Biotechnol. Bioeng., 109, 426 (2011).

[44] J.C. Quintero, M.T. Moreira, J.M. Lema, G. Feijoo, Chemos- phere, 63, 1005 (2006).

[45] J.R. Lucio‐Gutiérrez, M.L. Salazar‐Cavazos, N.H. Waksman de Torres, R. Castro‐Ríos, Analytical Letters, 41, 119 (2008). 

[46] American Public Health Association, Standard methods for examination of water and wastewater, APHA-AWWA-WEF. 15th ed. American Public Health Association, Washington DC, 1981.

[47] I.V. Robles-González, E. Ríos-Leal, R. Ferrera-Cerrato, F. Esparza-García, N. Rinderkenecht-Seijas, H.M. Poggi-Varaldo, Process Biochem., 41, 1951 (2006).

[48] H.M. Poggi-Varaldo, J.A. Oleszkiewicz, Environ. Technol., 13, 409 (1992).

[49] A.L. Vázquez –Larios, O. Solorza-Feria, G. Vázquez-Huerta, F. Esparza-García, N. Rinderknecht-Seijas, H.M. Poggi- Varaldo, Int. J. Hydrogen Energ., 36, 6199 (2011).

[50] K. Sathish-Kumar, O. Solorza-Feria, G. Vázquez-Huerta, J.P. Luna-Arias, H.M. Poggi-Varaldo, J. New Mat. Electrochem. Systems, 15, 181 (2012).

[51] D. Halliday, R. Resnick, J. Walker, In: Fundamentals of Physics. 7th ed., John Wiley & Sons Co., ISBN 978-0-471- 21643-8, New York, 2004.

[52] D.B. Ringelberg, K.L. Foley, C.M. Reynolds. Appl. Microbiol. Biotechnol., 90, 1805 (2011).

[53] H.M. Poggi-Varaldo, N. Rinderknecht-Seijas, S.Caffarel- Méndez, Interciencia, 27, 180 (2002).

[54] D. Singh and M.H. Fulekar, Innovative Romanian Food Biotechnology, 1, 31 (2007).

[55] T. Swapna, S. Sami, L.C. Mishra, L. Iyengar, World J. Microb. Biot., 18, 57 (2002).

[56] N. Lu, S.G. Zhou, L. Zhuang, J.T. Zhang, J.R. Ni, Biochem. Eng. J., 43, 246 (2009).

[57] Z. Yan, N. Song, H. Cai, J. H. Tay, H. Jiang, J. Hazard, Mater., 199, 217 (2012).

[58] Eweis J.B., Ergas S.J., Chang D.P.Y., Schroeder E.D., Biore- mediation Principles McGraw-Hill. USA, 1998.

[59] B.C. Okeke, T. Siddique, M.C. Arbestain, W.T. Frankenberger, J. Agric. Food Chem., 50, 2548 (2002).

[60] A.W. Boyle, M.M. Haggblom, L.Y. Young, FEMS Microbiol- ogy Ecol., 29, 379 (1999).

[61] D. Mackay, W.Y. Shiu, K.C. Ma, Illustrated handbook of physical chemical properties and environmental fate for organic chemicals. Volume I, Lewis Publishers, Chelsea, 1992.

[62] Commission for Environmental Cooperation.The North Ameri- can Regional Action Plan (NARAP) on Lindane and Other Hexachlorocyclohexane (HCH) Isomers. Draft for public com- ment dated 5 October 2005. http://www.cec.org/pubs_docs/documents/index.cfm?varlan=en glish&ID=1821.

[63] B. Camacho-Perez, E. Rios-Leal, F. Esparza-Garcia, J. Barrera- Cortés, F. Fava, H.M. Poggi-Varaldo, J. Biotechnol., 150, 561 (2010).

[64] B. Camacho-Pérez, E. Ríos-Leal, P.A. Vazquez-Landaverde, J. Garcia-Mena, J. Barrera-Cortés, F. Fava, M. Rinderknecht- Seijas, H.M. Poggi-Varaldo, Environ. Eng. Manag. J., 11, 16 (2012).

[65] E. Cruz-Gomez, Bioremediación de un suelo con alto contenido de materia organica contaminado con paration y lindano mediante el empleo de reactor de suelos activados secuencial desnitrificante fungico. M Sc. Thesis, Interim Report. CINVESTAV del IPN, México D.F., México, 2012.

[66] S.J. Dunaj, J.J. Vallino, M.E. Hines, M. Gay, C. Kobyljanec, J.N. Rooney-Varga, Environ. Sci. Technol., 46, 1914 (2012).