The Effect of Binder in Electrode Materials for Capacitance Improvement and EDLC Binder-free Cell Design

The Effect of Binder in Electrode Materials for Capacitance Improvement and EDLC Binder-free Cell Design

R. López-Chavéz A.K. Cuentas-Gallegos

Centro de Investigación en Energía-Universidad Nacional Autónoma de México, Privada Xochicalco S/N Col. Centro, AP 34, CP 62580 Temixco, Morelos, México

Instituto Tecnológico de Zacatepec. Av. Tecnológico S/N, Col Centro, CP 62760 Zacatepec, Morelos, Mexico

Corresponding Author Email:
15 November 2012
| |
19 December 2012
| | Citation

In the present work we show results related with the influence of the binder type used to elaborate active electrodes made of activated carbon (DLC) for the assembly of supercapacitor cells. A Nafion 5%w solution and/or Kinar Flex (Polyvinylidene fluoride, PVDF) were used as binders at different concentrations, using DLC carbon as the active material to make the electrodes by aerography, and carbon paper as support and current collector. Thickness of the electrodes was controlled by the weight of active material (DLC car- bon). Cyclic voltammetry technique was used to investigate the intrinsic capacitive nature of these electrodes, increasing this value from 120 F/g to 245 F/g at 20 mV/s just by improving the type and amount of binder, and the thickness of the electrode. Symmetric 2-electrode cells assembled with binder-free electrodes were electrochemically characterized by galvanostatic cycling, showing capacitance values of 38F/g and a stable behavior during 7000 charge-discharge cycles.


Supercapacitor, symmetric assembly, EDLC, Binder Free, activated carbon.

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
5. Acknowledgements

[1] Martin Winter, Ralph J. Brodd, Chem. Rev. 104, 4245 (2004).

[2] M. Conte, Fuel Cells, 10, 806 (2010).

[3] Graeme A. Snooka, Pon Kao, Adam S. Best, Journal of Power Sources, 196, 1 (2011).

[4] B.E. Conway, Electrochemical Capacitors: Scientific Funda- mentals and Technological Applications, Kluwer Academic Plenum. New York, 1999.

[5]  Basics of Electrochemical Impedance Spectroscopy (EIS), Appl. Note AC-1, Princeton Applied Research, 2008.

[6] a) A. Hammar et al., “Electrical Characterization and Modeling of Round Spiral Supercapacitors for High Power Applications (AC Impedance Testing),” paper presented at ESSCAP 2006, Lausanne, Switzerland. b) J.H.B. George, Final Report to ENEA, (1990).

[7] Andrew Burke, Marshall Miller, Electrochimica Acta, 55, 7538 (2010).

[8] Alexis Laforgue, Journal of Power Sources, 196, 559 (2011).

[9] Liangbing Hu, Mauro Pasta, Fabio La Mantia, LiFeng Cui, Sangmoo Jeong, Heather Dawn Deshazer, Jang Wook Choi, Seung Min Han and Yi Cui, Nano Letters, 10, 708 (2010).

[10] Martti Kaempgen, Candace K. Chan, J. Ma, Yi Cui and George Gruner, Nano Letters, 9, 1872 (2009).

[11] Chuizhou Meng, Changhong Liu, Shoushan Fan, Electrochem- istry Communications, 11, 186 (2009).

[12] Victor L. Pushparaj, Manikoth M. Shaijumon, Ashavani Kumar, Saravanababu Murugesan, Lijie Ci, Robert Vajtai, Robert J. Linhardt, Omkaram Nalamasu and Pulickel M. Ajayan, Proceedings of the National Academy of Sciences, 104, 13574 (2007).

[13] Chuizhou Meng, Changhong Liu, Luzhuo Chen, Chunhua Hu, and Shoushan Fan, Nano Letters 10, 4025 (2010).

[14] M. Lazzari, F. Soavi and M. Mastragostino, Fuel Cells, 10, 840 (2010).

[15] Taira Aida, Ichiro Murayama, Koji Yamada, Masayuki Morita, Journal of Power Sources, 166, 462 (2007).

[16] M. Lazzari, F. Soavi, M. Mastragostino, Journal of Power Sources, 178, 490 (2008).

[17] L. Bonnefoi, P. Simon, J.F. Fauvarque, C. Sarrazin, J.F. Sarrau, A. Dugast, Journal of Power Sources, 80, 149–155, (1999). 

[18] F. Lufrano, P. Staiti, Int. J. Electrochem. Sci., 5, 903 (2010). 

[19] Suzana  Sopcic,  Marijana  Kraljic  Rokovic,  Zoran  Mandic, J. Electrochem. Sci. Eng., 2, 41 (2012).

[20] Xiaorong Liu, Peter G. Pickup, Journal of Power Sources, 176, 410 (2008).

[21] V. Khomenko, E. Raymundo-Piñero, F. Béguin, Journal of Power Sources, 177, 643 (2008).

[22] V. Khomenko, E. Raymundo-Piñero, F. Béguin, Journal of Power Sources, 195, 4234 (2010).

[23] S.R.S. Prabaharan, R. Vimala, Zulkarnian Zainal, Journal of Power Sources, 161, 730 (2006).

[24] Guoping Wang, Lei Zhang, Jiujun Zhang, Chem. Soc. Rev.,  41, 797 (2012).

[25] M. Kaempgen, J. Ma, G. Gruner, G. Wee, and S.G. Mhaisal- kar, Appl. Phys. Lett., 90, 264104 (2007).

[26] Guanghui Xu, Chao Zheng, Qiang Zhang, Jiaqi Huang, Mengqiang Zhao, Jingqi Nie, Xianghua Wang, Fei Wei, NanoRes, 4, 870 (2011).

[27] Thierry Brousse, Pierre-Louis Taberna, Olivier Crosnier, Ro- main Dugas, Philippe Guillemet, Yves Scudeller, Yingke Zhou, Frédéric Favier, Daniel Bélanger, Patrice Simon. Journal of Power Sources, 173, 633 (2007).

[28] G. Gourdin, T. Jiang, P. Smith, D. Qu, J. Power Sources, 215, 179 (2012).

[29] X. Sun, X. Zhang, H. Zhang, D. Zhang, Y. Ma, J. Solid State Electrochem., 16, 2597 (2012).

[30] K. Karthikeyan, V. Aravindan, S.B. Lee, I.C. Jang, H.H. Lim, G.J. Park, M. Yoshio, Y.S. Lee, J. Alloys and Compounds, 504, 224 (2010).

[31] A. Lasia, Electrochemical Impedance Spectroscopy and Its Applications, Modern Aspects of Electrochemistry, B.E. Con- way, J. Bockris, and R.E. White, Edts., Kluwer Aca- demic/Plenum Publishers, New York, Vol. 32, p. 143. 1999.

[32] C. Schmitt, H. Pröbstle, J. Fricke, Journal of Non-Crystalline Solids, 285, 277 (2001).